Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trường Quang
Xem chi tiết
kẻ giấu tên
Xem chi tiết
Việt Anh 5c
Xem chi tiết
Thị Thu Thúy Lê
Xem chi tiết
NGUYỄN THẾ HIỆP
14 tháng 2 2017 lúc 11:35

TH1:Nếu x>0

nếu y\(\ne\)0, ta có: \(VT>2012.1^{2015}+2013.1^{2018}>2015\)

nếu y=0, ta có : nếu x=1, VT=2012<2015

                        nếu x>1, \(VT>2012.2^{2015}+2013.0^{2018}>2015\)

TH2: nếu x=0, pt vô nghiệm

TH3: nếu x<0, ta có: \(2013y^{2018}+2012x^{2015}=2012\left(y^{2018}-x^{2015}\right)+y^{2018}\)

ta thấy x<0 nên VT>2012.(1+1)+1>2015

Vậy pt trên không có nghiệm nguyên

Linh Chi
Xem chi tiết
Le Thi Khanh Huyen
1 tháng 7 2016 lúc 12:59

\(xy=\frac{13}{15}\)

\(yz=\frac{1}{3}\)

\(zx=\frac{3}{13}\)

\(\Rightarrow\left(xyz\right)^2=\frac{13}{15}.\frac{1}{3}.\frac{3}{13}=\frac{1}{15}=\frac{1^2}{\left(\sqrt{15}\right)^2}\)

Vì x ; y ; z là các số hữu tỉ nên ( xyz)2 là số hữu tỉ, ta chỉ cần chứng minh \(\sqrt{15}\) không phải số hữu tỉ mà là số vô tỉ.

Giả sử \(\sqrt{15}\) là số hữu tỉ thì coi \(\sqrt{15}=\frac{m}{n}\)\(\frac{m}{n}\) phải là phân số tối giản)

\(\Rightarrow15=\frac{m^2}{n^2}\)

\(\Rightarrow15n^2=m^2\)

\(\Rightarrow m^2\)chia hết cho 15 = 3 x 5; 3 và 5 là các số nguyên tố nên \(m\) chia hết cho 15.

Đặt \(m=15k\left(k\in Z;k\ne0\right)\)

\(\Rightarrow m^2=\left(15k\right)^2=225k^2\)

\(\Rightarrow15n^2=m^2=225k^2\)

\(\Rightarrow n^2=\frac{225k^2}{15}=15k^2\)

\(\Rightarrow n^2\)chia hết cho 15

\(\Rightarrow n\)chia hết cho 15

Xét phân số \(\frac{m}{n}\)có m và n đều chia hết cho 15 nên không phải phân số tối giản, trái với đề bài. Do đó \(\sqrt{15}\) không phải số hữu tỉ.

Do đó không tồn tại 3 số hữu tỉ x ; y ; z thỏa mãn đề bài.

Trần Hải Đăng
Xem chi tiết
Châu Khánh Long
Xem chi tiết
Rồng Đom Đóm
18 tháng 12 2018 lúc 21:42

\(x^2+2y^2-2xy+x-2y+1=0\)

\(\Leftrightarrow x^2-2xy+y^2+x-y+\dfrac{1}{4}+y^2-y+\dfrac{1}{4}+\dfrac{1}{2}=0\)

\(\Leftrightarrow\left(x-y\right)^2+2.\dfrac{1}{2}\left(x-y\right)+\left(\dfrac{1}{2}\right)^2+y^2-2.\dfrac{1}{2}y+\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}=0\)

\(\Leftrightarrow\left(x-y+\dfrac{1}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{2}=0\)

\(VT\ge\dfrac{1}{2}>0\Rightarrow VT>VP\)

\(\Rightarrow\)PT vô nghiệm(đpcm)

Lê Hoàng Ngọc Minh
Xem chi tiết
vu thi thanh thao
Xem chi tiết