giai he phuong trinh :
x/5=y/7=z/3
2x-y+az=30
Giai he phuong trinh
x√y + y√x=30
x√x + y√y =35
Moi nguoi giai ho minh voi
\(\int^{x\sqrt{y}+y\sqrt{x}=30}_{x\sqrt{x}+y\sqrt{y}=35}\Leftrightarrow\int^{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=30}_{\left(\sqrt{x}+\sqrt{y}\right)^3-3\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=35}\)
\(\Leftrightarrow\int^{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=30}_{\left(\sqrt{x}+\sqrt{y}\right)^3-90=35}\Leftrightarrow\int^{\sqrt{xy}=6}_{\sqrt{x}+\sqrt{y}=5}\)
giai he phuong trinh
x+y+z=2016
(x*y/x*x+x*y+y*y)+(y*z/y*y+y*z+z*z)+(z*x/z*z+z*x+x*x)=1
tim nghiem nguyen cua cac phuong trinh:
xyz=4(x+y+z) (x+y+z)
5(x+y+z+t)+7=xyzt
nho giai cho minh nhe
trinh bay ra nhe
minh tink cho bn bn tink vho minh voi nhe
giai phuong trinh \(\left(16x^{4n}+1\right)\left(y^{4n}+1\right)\left(z^{4n}+1\right)=32x^{2n}.y^{2n}.z^{2n}\)
Áp dụng Côsi
\(VT=\left(16x^{4n}+1\right)\left(y^{4n}+1\right)\left(z^{4n}+1\right)\ge2\sqrt{16x^{4n}}.2\sqrt{y^{4n}}.2\sqrt{z^{4n}}\)
\(=32x^{2n}y^{2n}z^{2n}=VP\)
Dấu "=" xảy ra khi và chỉ khi \(x^{4n}=\frac{1}{16};y^{4n}=z^{4n}=1\)
\(\Leftrightarrow x=\sqrt[n]{\frac{1}{2}};y=z=1\)
giai he phuong trinh
x+y+xy=11y+z+zy=47z+x+zx=35\(x+y+xy=11\Leftrightarrow x\left(y+1\right)+y+1=12\Leftrightarrow\left(x+1\right)\left(y+1\right)=12\)(1)
\(y\left(z+1\right)+z+1=48\Leftrightarrow\left(y+1\right)\left(z+1\right)=48\left(2\right)\)
\(z\left(x+1\right)+x+1=36\Leftrightarrow\left(z+1\right)\left(x+1\right)=36\left(3\right)\)
Lấy vế nhân vế của (1) (2) và (3) ta đc : \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=12\cdot36\cdot48=144^2\)
=> \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=144\) hoặc = -144
(+) Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=144\)
=> z + 1 = 144 : 12 = 12 => z = 11
=> \(x+1=144:48=3\Rightarrow x=2\)
=> \(y+1=144:36=4\Leftrightarrow y=3\)
(+) Với ( x +1 )( y +1 )( z + 1 ) = -144 ( tương tự )
giai he phuong trinh \(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+1}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}-\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}-\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
Đặt x+y-1=a; 2x-y+3=b
Theo đề, ta có:
4/a-5/b=5/2 và 3/a-1/b=7/5
=>a=22/9; b=-110/19
=>x+y=31/9; 2x+y=-110/19-3=-167/19
=>x=-2092/171; y=2681/171
giai he phuong trinh \(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{2x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}-\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
=>12/(x+y-1)-15/(2x-y+3)=15/2 và 12/(x+y-1)-4/(2x-y+3)=28/5
=>x+y-1=22/9; 2x-y+3=-110/19
=>x+y=31/9; 2x-y=-167/19
=>x=-914/513; y=2681/513
giai phuong trinh x^2+y^2+z^2=y(x+z)
\(PT\Leftrightarrow x^2+y^2+z^2=xy+yz\)
\(\Leftrightarrow4x^2+4y^2+4z^2=4xy+4yz\)
\(\Leftrightarrow4x^2+4y^2+4z^2-4xy-4yz=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(4z^2-4yz+y^2\right)+2y^2=0\)
\(\Leftrightarrow\left(2x-y\right)^2+\left(2z-y\right)^2+2y^2=0\)
Vì \(\left(2x-y\right)^2+\left(2z-y\right)^2+2y^2\ge0\forall x;y;z\)
Dấu "=" xảy ra khi \(x=y=z=0\)
giai he phuong trinh
2(x+y) + √(x+1) = 4
(x+y) - 3√(x+1)=-5
\(-\int^{2\left(x+y\right)+\sqrt{x+1}=4}_{2\left(x+y\right)-6\sqrt{x+1}=-10}\Leftrightarrow\int^{7\sqrt{x+1}=14}_{x+y-3\sqrt{x+1}=-5}\Leftrightarrow\int^{\sqrt{x+1}=2}_{x+y-6=-5}\Leftrightarrow\int^{x=3}_{y=-2}\) => vậy..