Cho m, n số nguyên dương, m2 + n2 + m chia hết cho mn. CMR m là số chính phương
1.Cho a,b,c là các số nguyên tố thoả mãn: ab + 1 = c. CMR: a2+ c hoặc b2+ c là số chính phương
2.Cho m,n là các số nguyên dương thoả mãn: m2+n2+m⋮mn. CMR: m là một số chính phương
Bài 2.Cho m,n là hai số nguyên dương sao cho m2022+ m + n2 chia hết cho mn. Chứng minh rằng m là số chính phương.
Cho các số nguyên dương m,n thỏa mãn: m3+n3=m chia hết cho mn. CMR m là lập phương của 1 số nguyên dương
Cho n là số nguyên dương và m là ước nguyên dương của 2n2
CMR : n2 + m không là số chính phương
Cho m,n là các số nguyên dương thoả mãn: \(m^2+n+m⋮mn\)CMR: m là một số chính phương
cho các số nguyên dương m,n sao cho m3 + n3 +m chia hết cho m.n. Cmr m là lập phương của một số nguyên dương
“Chứng minh rằng 2 là số vô tỉ”. Một học sinh đã lập luận như sau:
Bước 1: Giả sử 2 là số hữu tỉ, thế thì tồn tại các số nguyên dương m,n sao cho 2 = m n (1)
Bước 2: Ta có thể giả định thêm m n là phân số tối giản
Từ đó 2 n 2 = m 2 (2)
Suy ra m2 chia hết cho 2 => m chia hết cho 2 => ta có thể viết m = 2p
Nên (2) trở thành n 2 = 2 p 2
Bước 3: Như vậy ta cũng suy ra n chia hết cho 2 và cũng có thể viết n=2q
Và (1) trở thành 2 = 2 p 2 q = p q ⇒ m n không phải là phân số tối giản, trái với giả thiết
Bước 4: vậy 2 là số vô tỉ.
Lập luận trên đúng tới hết bước nào?
A. Bước 1
B. Bước 2
C. Bước 3
D. Bước 4
Đáp án D
Dựa vào các bước chứng minh ta thấy lập luận đó là chính xác tất cả các bước.
Cho m,n là số nguyên dương thoả mãn: \(\left(m+n\right)^2+3m+n\) là số chính phương
CMR: \(4mn+1\) là số chính phương
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3