so sánh M=\(\frac{2004}{2005}+\frac{2005}{2006}\) và N=\(\frac{2004+2005}{2005+2006}\)
Không lm tính, hãy so sánh: A= \(\frac{2004}{2005}\)+ \(\frac{2005}{2006}\) và B= \(\frac{2004+2005}{2005+2006}\)
Ta có :
\(B=\frac{2004+2005}{2005+2006}=\frac{2004}{2005+2006}+\frac{2005}{2005+2006}< \frac{2004}{2005}+\frac{2005}{2006}=A\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vây \(A>B\)
Chúc bạn học tốt ~
Câu này chắc chắn bằng vì hay phân số điều y chan mà
so sánh M=2004/2005+2005/2006 và N=2004+2005/2005+2006
\(N=\frac{2004+2005}{2005+2006}=\frac{2004}{2005+2006}+\frac{2005}{2005+2006}\)
\(\text{Vì }\frac{2004}{2005}>\frac{2004}{2005+2006};\frac{2005}{2006}>\frac{2005}{2005+2006}\text{nên:}\)
\(\frac{2004}{2005}+\frac{2005}{2006}>\frac{2004}{2005+2006}+\frac{2005}{2005+2006}\)
Vậy M>N
\(\frac{2004}{2005}>0,5\); \(\frac{2005}{2006}>0,5\)nên \(\frac{2004}{2005}+\frac{2005}{2006}>1\)
\(\frac{2004+2005}{2005+2006}\)có hai số hạng ở tử số nhỏ hơn 2 số hạng ở mẫu số => \(\frac{2004+2005}{2005+2006}\frac{2004+2005}{2005+2006}\)
So sánh :A=\(\frac{2005^{2005}+1}{2005^{2006}+1}\)và B=\(\frac{2005^{2004}+1}{2005^{2005}+1}\)
Ta có VẾ A
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)
\(2005\cdot A=\frac{2005\cdot\left(2005^{2005}+1\right)}{2005^{2006}+1}\)
\(2005\cdot A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)
\(2005\cdot A=\frac{2005^{2006}+1+2004}{2005^{2006}+1}\)
\(2005\cdot A=1+\frac{2004}{2005^{2006}+1}\)
Ta lại có Vế B :
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(2005\cdot B=\frac{2005\cdot\left(2005^{2004}+1\right)}{2005^{2005}+1}\)
\(2005\cdot B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)
\(2005\cdot B=\frac{2005^{2005}+1+2004}{2005^{2005}+1}\)
\(2005\cdot B=1+\frac{2004}{2005^{2005}+1}\)
Nhìn vào trên , suy ra A < B .
\(2005A=\frac{2005\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)
\(2005B=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2014}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2014}{2005^{2005}+1}=1+\frac{2014}{2005^{2005}+1}\)Ta thấy \(2005^{2006}+1>2005^{2005}+1\Rightarrow\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)
\(\Rightarrow A< B\)
So sánh: \(A=\frac{2005^{2005}+1}{2005^{2006}+1};B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)
\(\Rightarrow2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)
\(\Rightarrow2005A=1+\frac{2004}{2005^{2006}+1}\)
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(\Rightarrow2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)
\(\Rightarrow2005B=1+\frac{2004}{2005^{2005}+1}\)
Ta thấy \(\frac{2004}{2005^{2005}+1}>\frac{2004}{2005^{2006}+1}\)
Suy ra \(1+\frac{2004}{2005^{2005}+1}>1+\frac{2004}{2005^{2006}+1}\)
hay 2005B>2005A
Vậy B>A
So sánh:
\(A=\frac{2003}{2004}+\frac{2005}{2006};B=\frac{2003+2004}{2004+2005}\)
SO SÁNH
a, C= \(\frac{2005^{2005}+1}{2005^{2006}+1}\)và D = \(\frac{2005^{2004}+1}{2005^{2005}+1}\)
nhân cả C và D với 2005 rồi tách ra so sánh
Ta có : \(2005C=\frac{2005\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)
\(2005D=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+1+2004}{2005^{2005}+1}=1+\frac{2004}{2005^{2005}+1}\)
Vì \(\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)
=> 2005.C < 2005.D
=> C < D
\(C=\frac{2005^{2005}+1}{2005^{2006}+1}< \frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}=\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}=\frac{2005^{2004}+1}{2005^{2005}+1}=D\)
Vậy \(C< D\)
so sánh 2004/2005+2005/2006 và 2004+2005/2005+2006
So sánh hai phân số sau:M=2004/2005+2005/2006 và N=2004+2005/2005+2006
Không tính hãy so sanh hai biểu thúc A và B biết: A= \(\frac{2004}{2005}\)+ \(\frac{2005}{2006}\)và B=\(\frac{2004+2005}{2005+2006}\)
\(\frac{2004}{2005}>\frac{2004}{2005+2006}\)
\(\frac{2005}{2006}>\frac{2005}{2005+2006}\)
->\(\frac{2004}{2005}+\frac{2005}{2006}>\frac{2004+2005}{2005+2006}\)
-> A >B