Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Lan
Xem chi tiết
Lưu Minh Hằng
Xem chi tiết
Trần Hà Diệu Thúy
25 tháng 12 2016 lúc 10:23

theo mình thì thiếu điều kiện \(^{x^2-y^2=1}\)nữa thì giải được

Nguyễn Thị Lan Anh
2 tháng 1 2017 lúc 17:27

NẾU CÓ THÊM ĐIỀU KIỆN ĐÓ THÌ SẼ GIẢI LÀM SAO? GIÚP MÌNH VS, MÌNH CẦN GẤP

Trần Anh Tuấn
Xem chi tiết
Phan Ba Gia Hien
Xem chi tiết
Lâm TatThanh
Xem chi tiết

nhóm cuối sẽ nhóm được thành nhiều nhóm:

(1/2016+2015/2016)+(2/2016+2014/2016)+.......+(1008/2016+1008/2016) có tổng cộng 1008 nhóm =1

suy ra nhóm trên có kq là 1008

= 1/2+1+1+1008

=1/2+1010

=2021/2

cho mik nha

Thị Dục Nguyễn
14 tháng 2 2024 lúc 20:17

(1/2016+2015/2016)+(2/2016+2014/2016)+.......+(1008/2016+1008/2016) có tổng cộng 1008 nhóm =1

suy ra nhóm trên có kq là 1008

= 1/2+1+1+1008

=1/2+1010

=2021/2

Nguyễn Kế Vũ
14 tháng 2 2024 lúc 20:18

(1/2016+2015/2016)+(2/2016+2014/2016)+.......+(1008/2016+1008/2016) có tổng cộng 1008 nhóm =1

suy ra nhóm trên có kq là 1008

= 1/2+1+1+1008

=1/2+1010

=2021/2

Ngô Thu Hiền
Xem chi tiết
Sarah
12 tháng 7 2017 lúc 9:48

Cách 1:
Xét số bị trừ, ta có:
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016 + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) + 2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Xét số trừ, ta có: 
(1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016 + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016) x (2/3 + 3/4 + 4/5 + ... + 2015/2016) + 2016/2017 x (2/3 +3/4 + 4/5 + ... + 2015/2016) =
Ta thấy số bị trừ và số trừ có số hạng giống nhau là:
(2/3 +3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Nên phép trừ trên có thể viết lại:
2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - 2016/2017 x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= 2016/2017 x [(1/2 + 2/3 + 3/4 + ... + 2015/2016) - (2/3 +3/4 + 4/5 + ... + 2015/2016)]
= 2016/2017 x 1/2
= 1008/2017

Cách 2:

zzBv

Trần Nhật Quỳnh
Xem chi tiết
Trần Nhật Quỳnh
22 tháng 3 2017 lúc 20:37

Cách 1:
Xét số bị trừ, ta có:
(2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016 + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
= (2/3 + 3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) + 2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Xét số trừ, ta có: 
(1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016 + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= (1/2 + 2/3 + 3/4 + ... + 2015/2016) x (2/3 + 3/4 + 4/5 + ... + 2015/2016) + 2016/2017 x (2/3 +3/4 + 4/5 + ... + 2015/2016) =
Ta thấy số bị trừ và số trừ có số hạng giống nhau là:
(2/3 +3/4 + 4/5 + ... + 2015/2016) x (1/2 + 2/3 + 3/4 + ... + 2015/2016)
Nên phép trừ trên có thể viết lại:
2016/2017 x (1/2 + 2/3 + 3/4 + ... + 2015/2016) - 2016/2017 x (2/3 + 3/4 + 4/5 + ... + 2015/2016)
= 2016/2017 x [(1/2 + 2/3 + 3/4 + ... + 2015/2016) - (2/3 +3/4 + 4/5 + ... + 2015/2016)]
= 2016/2017 x 1/2
= 1008/2017

Cách 2:

Ngân Đặng Bảo
26 tháng 6 2017 lúc 20:34

Là 1008/2017 đó nha

Trần Tuấn Hưng
19 tháng 4 2018 lúc 20:18

Tính: (2/3 + 3/4 + 4/5 + ... + 2016/2017) x (1/2 + 2/3 + 3/4 + ... + 2015/2016) – (1/2 + 2/3 + 3/4 + ... + 2016/2017) x (2/3 + 3/4 + 4/5 + ... + 2015/2016).

453437745
Xem chi tiết
Xyz OLM
16 tháng 8 2019 lúc 13:40

 \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2016.2016}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}< 1\)

\(\Rightarrow A< 1\)

\(\text{Vậy }A< 1\left(\text{đpcm}\right)\)

︵✰ßล∂
16 tháng 8 2019 lúc 13:40

                                                                     Bài giải

 Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\) ;  \(\frac{1}{3^2}< \frac{1}{2\cdot3}\) ; \(\frac{1}{4^2}< \frac{1}{3\cdot4}\)  ; ... ; \(\frac{1}{2016^2}< \frac{1}{2015\cdot2016}\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}=\frac{2015}{2016}< 1\)

                                   \(\Rightarrow\text{ }A< 1\)

Lily
16 tháng 8 2019 lúc 13:42

                                                                     Bài giải

 Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\) ;  \(\frac{1}{3^2}< \frac{1}{2\cdot3}\) ; \(\frac{1}{4^2}< \frac{1}{3\cdot4}\)  ; ... ; \(\frac{1}{2016^2}< \frac{1}{2015\cdot2016}\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}=\frac{2015}{2016}< 1\)

                                   \(\Rightarrow\text{ }A< 1\text{ }\left(\text{ ĐPCM}\right)\)

Duy Mai Khương
Xem chi tiết
Đỗ Thành Vinh
29 tháng 3 2017 lúc 21:58

0

k mình nha