HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Tìm x và y trên hình 21, biết rằng ABCD là hình thang có đáy là AB và CD.
đáp số là 3
a. vì ABC cân tại A, AH | BC
=> AH là đường cao của ABC
=> AH cũng là đường trung trực của ABC
xét \(\Delta\)ABH và \(\Delta\)ACH có:
AB=AC(gt)
B=C(gt)
HB=HC(trung trực)
=> \(\Delta\text{ABH}=\Delta\text{ACH}\)(C.G.C)
=> BAH=HAC(2 góc tương ứng)
b. trong tam giác ABH có:
AB2=AH2+BH2(PI TA GO)
=> 202=62+BH2
=> 400=36+BH2
=> BH2=400-36
=> BH2=364
=> BH=\(\sqrt{364}\)
MÀ AH là trung trực => BH=CH
=> BC=BH+CH=\(\sqrt{364}+\sqrt{364}\) (SỐ HƠI LẺ)
cai nay ban nen dung dinh li Me-ne-la-uyt.
=a(b + c)^2(b - c) + b(c + a)^2(c - a) - c(a + b)^2[(b - c) + (c - a)] = a(b + c)^2(b - c) + b(c + a)^2(c - a) - c(a + b)^2(b - c) - c(a + b)^2(c - a) = [a(b + c)^2(b - c) - c(a + b)^2(b - c)]+ [b(c + a)^2(c - a) - c(a + b)^2(c - a)] = (b - c)[a(b + c)^2 - c(a + b)^2] + (c - a)[b(c + a)^2 - c(a + b)^2] = (b - c)(ab^2 + ac^2 - ca^2 - cb^2) + (c - a)(bc^2 + ba^2 - ca^2 - cb^2) = (b - c)[ac(c - a) - b^2(c - a)] + (c - a)[a^2(b - c) - bc(b - c)] = (b - c)(c - a)(ac - b^2) + (c - a)(b - c)(a^2 - bc) = (b - c)(c - a)(ac - b^2 + a^2 - bc) = (b - c)(c - a)[(a^2 - b^2) + (ac - bc)] = (b - c)(c - a)[(a - b)(a + b) + c(a - b)] = (b - c)(c - a)(a - b)(a + b + c) = (a - b)(b - c)(c - a)(a + b + c).
neu minh sai o cho nao thi ban giup minh nha