Tìm min, max của \(A=\frac{x^4+1}{\left(x^2+1\right)^2}\)
Min:
\(A=\frac{x^4+1+2x^2-2x^2}{x^4+2x^2+1}=1-\frac{2x^2}{\left(x^2+1\right)^2}\)
Nhận xét: \(\frac{2x^2}{\left(x^2+1\right)^2}\ge0\)
=> \(1-\frac{2x^2}{\left(x^2+1\right)^2}\ge1\)
Dấu = <=> x=0
Max:
Đặt x2=a
Đặt x-1=y
Đặt 1/y=z
Câu này nâng cao lắm, chắc mình chưa cần giải đâu.
Ra Min=1/2 <=>x=1