tìm giá trị lớn nhất của A= 4n+9 / 2n+3 với n là số nguyên
Tìm giá trị lớn nhất A=\( \frac{4n+9}{2n+3}\)với n là 1 số nguyên
Do n là số nguyên nên ta có: \(\frac{4n+9}{2n+3}=\frac{4n+6+3}{2n+3}=\frac{4n+6}{2n+3}+\frac{3}{2n+3}\)\(=2+\frac{3}{2n+3}\)
Do đó để A lớn nhất thì \(\frac{3}{2n+3}\) lớn nhất. Vì 3 nguyên dương nên \(\frac{3}{2n+3}\) lớn nhất khi \(2n+3=1\Rightarrow2n=-2\Rightarrow n=-1\)
Với n=-1, ta có:\(A=\frac{4n+9}{2n+3}=\frac{4.\left(-1\right)+9}{2.\left(-1\right)+3}=\frac{-4+9}{-2+3}\)
\(=\frac{5}{1}=5\)
Vậy maxA=5 khi x=-1
tìm số nguyên n để phân số sau có giá trị lớn nhất: 4n + 9/2n + 3
Tìm giá trị lớn nhất của A= 4n+9/2n+3 với n là một số nguyên
Ta có:
A=4n+92n+3=4n+6+32n+3=2+32n+3A=4n+92n+3=4n+6+32n+3=2+32n+3
Để A có GTLN thì 32n+332n+3
⇒32n+3⇒32n+3 là số dương
Mà 3 là số dương ko đổi nên 2n + 3 là số dương bé nhất
⇒2n+3=1⇒2n=−2⇒n=−1⇒2n+3=1⇒2n=−2⇒n=−1
Khi đó: A=2+3=5A=2+3=5
Vậy A đạt GTLN là 5 <=> n = -1
\(A=\frac{4n+9}{2n+3}=\frac{4n+6+3}{2n+3}=2+\frac{3}{2n+3}\)
Để A đạt GTLN => 2n+3 bé nhất(ĐẾN đây tự giải tiếp)
akemi theo dấu ps ak, nhưng ko sao, mk vẫn hiểu đc
Cho A = 4n+1 / 2n+3 (n là số nguyên).
a) Tìm n để A nguyên
b) Tìm n để A có giá trị lớn nhất, nhỏ nhất
\(\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Để \(2-\frac{5}{2n+3}\) là số nguyên <=> \(\frac{5}{2n+3}\) là số nguyên
=> 2n + 3 thuộc Ư(5) = { - 5; - 1; 1; 5 }
=> 2n + 3 = { - 5; - 1; 1; 5 }
=> n = { - 4; - 2; - 1 ; 1 }
a) Ta có:
\(\frac{4n+1}{2n+3}\inℤ\)
\(\Rightarrow\frac{4n-2+3}{2n+3}\inℤ\)
\(\Rightarrow\frac{2n+2n+3-2}{2n+3}\inℤ\)
\(\Rightarrow\frac{2n+3}{2n+3}+\frac{2n-2}{2n+3}\inℤ\)
\(\Rightarrow1+\frac{2n-2}{2n+3}\inℤ\Leftrightarrow\frac{2n-2}{2n+3}\inℤ\)
\(\Rightarrow\frac{2n+3-5}{2n+3}\inℤ\)
\(\Rightarrow1+\frac{-5}{2n+3}\inℤ\Leftrightarrow\frac{-5}{2n+3}\inℤ\)
\(\Rightarrow\left(2n+3\right)\in B\left(-5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow\left(2n+3\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow2n=\left\{-2;-4;2;-8\right\}\)
\(\Rightarrow n=\left\{-1;-2;1;-4\right\}\)
Tìm giá trị lớn nhất của A = 4n + 9 / 2n+ 3 với n là số nguyên
Ta có:
\(A=\frac{4n+9}{2n+3}=\frac{4n+6+3}{2n+3}=2+\frac{3}{2n+3}\)
Để A có GTLN thì \(\frac{3}{2n+3}\)
\(\Rightarrow\frac{3}{2n+3}\) là số dương
Mà 3 là số dương ko đổi nên 2n + 3 là số dương bé nhất
\(\Rightarrow2n+3=1\Rightarrow2n=-2\Rightarrow n=-1\)
Khi đó: \(A=2+3=5\)
Vậy A đạt GTLN là 5 <=> n = -1
tìm số nguyên n để p có giá trị lớn nhất với p=4n+1 / 2n+3
cho B=\(\dfrac{2n^2-4n+15}{2(n-1)^2+3} \)
a) tìm số nguyên n để B có giá trị lớn nhất
b)Tìm số nguyên n để B có giá trị là số nguyên
Tìm số nguyên n để C=4n-9/2n+3 có giá trị lớn nhất .
Cho biểu thức \(P=\frac{4n+1}{2n+3}\)
a, Tìm số nguyên n để P nhận giá trị là số nguyên
b, Tìm số nguyên n để P có giá trị lớn nhất