hình thang ABCD(có góc A=góc D=90 độ),AC vuông góc với BD tại O.biết ab=9 cm;cd=25 cm.
a)chứng minh tam giác AOB và DAB đồng dạng.
b)Tính độ dài AD.
c)Vẽ phân giác AE của góc BAD(E thuộc BD).Tính tỉ số diện tích tam giác ADE và tam giác AEB.
hình thang ABCD(có góc A=góc D=90 độ),AC vuông góc với BD tại O.biết ab=9 cm;cd=25 cm. a)chứng minh tam giác AOB và DAB đồng dạng.
b)Tính độ dài AD
c)Vẽ phân giác AE của góc BAD(E thuộc BD).Tính tỉ số diện tích tam giác ADE và tam giác AEB.
help me!!
Cho hình thang ABCD có AB // CD , AD = 12 cm , CD = 16 cm . Góc A = góc D = 90 độ , hai đường chéo AC vuông góc với BD tại O . Tính diện tích ABCD
Cho hình thang ABCD có AB // CD . Góc A = góc D = 90 độ , hai đường chéo AC vuông góc với BD tại O , OD = 8 cm , OB = 2 cm .Tính diện tích ABCD
Cho hình thang ABCD có AB // CD , AD = 12 cm , CD = 16 cm . Góc A = góc D = 90 độ , hai đường chéo AC vuông góc với BD tại O . Tính diện tích ABCD
Cho hình thang ABCD có góc A=góc D=90 độ, AC vuông góc với BD tại O
a,CM AD2=AB.CD
b,Cho AB=9cm, CD=16cm . Tính diện tích hình thang ABCD
c,Tính OA, OB,OC , OD
ta có: góc D1 + D2 =90
mà D1 + C1 =90
=>D2=C1
xét tam giác ABD và DAC có
BAD=ADC
D2=C1(cmt)
=>ABD đồng dạng DAC (g-g)
=>AB/AD=AD/DC
<=>AD^2=AB.DC(1)
b) Bạn áp dung CT(1) tính AD sau đó tính DT abcd
c) Dựa vào hệ thức lượng trong tam giác vuông:
1/OA^2=1/ab^2 + 1/ad^2 =>OA=...
tính AC,BD bằng Pytago
OC= AC-OA
OD^2=OA*OC =>OD=....
OB=BD-OD
Chúc bạn học tốt !
Bài 1: Hình thang ABCD có góc A = góc D = 90 độ, AC vuông góc BD tại O. Biết OA=45cm, OC=25cm. Tính BD,AB,CD
Bài 1: Hình thang ABCD có góc A = góc D = 90 độ, AC vuông góc BD tại O. Biết OA=45cm, OC=25cm. Tính BD,AB,CD
Cho hình thang vuông ABCD(góc A=Góc D=90 độ) có AC cắt BD tại O.a)CMR tam giác OAB đồng dạng với tam giác OCD,từ đó suy ra DO/DB=CO/CA.b)CM AC^2-BD^2=DC^2-AB^2
Cho hình thang ABCD có AB//CD góc A băng 90 độ hai đường chéo AC và BD vuông góc với nhau tại O biết AB=4cm , AD=10cm .Tính AC,BD,BC và diện tích hình thang ABCD .
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)