Tìm x,y,z
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^2}{216};x^2+y^2+z^2=14\)
Tìm x, y, z :
a, \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và x2+y2+z2=14
b, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x+3y-z=50
c, 2x=3y=5z và x+y-z=95
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)
= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5
Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11
\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17
\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23
Vậy x = 11 ; y = 17 ; z = 23
a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)
Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=1;y^2=4;z^2=9\)
=> x = 1 hoặc -1
y = 2 hoặc -2
z = 3 hoặc -3
b) Giải:
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1,y=3k+2,z=4k+3\)
Ta có: \(2x+3y-z=50\)
\(\Rightarrow2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Rightarrow4k+2+9k+6-4k-3=50\)
\(\Rightarrow\left(4k+9k-4k\right)+\left(2+6-3\right)=50\)
\(\Rightarrow9k+5=50\)
\(\Rightarrow9k=45\)
\(\Rightarrow k=5\)
\(\Rightarrow x=5.2+1=11\)
\(\Rightarrow y=3.5+2=17\)
\(\Rightarrow z=4.5+3=23\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(11;17;23\right)\)
c) Giải:
Ta có: \(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{1}{19}}=1805\)
+) \(\frac{x}{\frac{1}{2}}=1805\Rightarrow x=\frac{1805}{2}\)
+) \(\frac{y}{\frac{1}{3}}=1805\Rightarrow y=\frac{1805}{3}\)
+) \(\frac{z}{\frac{1}{5}}=1805\Rightarrow z=361\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(\frac{1805}{2};\frac{1805}{3};361\right)\)
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216};x^2+y^2+z^2=14\)
tìm x,y,z biết :\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) va x^2+y^2+z^2= 14
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=0,25\)
Suy ra: x2/4=0,25 =>x2=1=>x=-1 hoặc x=1
y2/16=0,25=>y2=4 =>y=2 hoặc y=-2
z2/36=0,25 =>z2=9 => z=3 hoặc z=-3
cách này có đúng không nhỉ ?
a3\8 = b3\64 = c3\216
suy ra a3\23 = b3\43 = c3\63
( a\2)3 = (b\4)3 = (c\6)3
a\2 = b\4 = c\6
suy ra a=2k , b=4k , c=6k
ta có a2+b2+c2=14
(2k)2+(4k)2+(6k)2=14
4k2 + 16k2 + 36k2=14
k2(4+16+36) = 14
k2*56=14
k2 = 14/56=1/4
k= 1/2 hoặc -1/2
với k=1/2 thì a=1/2*2=1 , b= 1/2*4 = 2 , c=1/2*6 = 3
với k=-1/2 thì a= -1/2 *2=-1 , b=-1/2*4=-2 , c= -1/2 * 6 = -3
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) Tìm x,y z biết \(x^2+y^2+z^2=14\)
Thèo đề bài, ta có:
\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
x ; y ; z thì bạn tự tìm nhé , chắc cái này không khó đâu nhỉ ??
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\) \(=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\frac{x}{2}=\frac{1}{4}\Rightarrow x=\frac{1}{2}\)
\(\frac{y}{4}=\frac{1}{4}\Rightarrow y=1\)
\(\frac{z}{6}=\frac{1}{4}\Rightarrow z=\frac{3}{2}\)
tìm x,y,z
\(\hept{\begin{cases}\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\\x^2+y^2+z^2=14\end{cases}}\)
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{4}=\frac{1}{4}\\\frac{y^2}{16}=\frac{1}{4}\\\frac{z^2}{36}=\frac{1}{4}\end{cases}\Rightarrow\hept{\begin{cases}x^2=1\\y^2=4\\z^2=9\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm1\\y=\pm2\\z=\pm3\end{cases}}}\)
Cho ba số âm x,y,z thỏa mãn: \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216};x^2+y^2+z^2=14\).Khi đó x+y-z=?
Lời giải:
$\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}$
$\Rightarrow (\frac{x}{2})^3=(\frac{y}{4})^3=(\frac{z}{6})^3$
$\Rightarrow \frac{x}{2}=\frac{y}{4}=\frac{z}{6}$
$\Rightarrow \frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}$
Áp dụng TCDTSBN:
$\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}$
$\Rightarrow x^2=1\Rightarrow x=\pm 1$
Nếu $x=1$ thì $\frac{y}{4}=\frac{z}{6}=\frac{1}{2}\Rightarrow y=2; z=3$
$\Rightarrow x+y-z=1+2-3=0$
Nếu $x=-1$ thì $\frac{y}{4}=\frac{z}{6}=\frac{-1}{2}\Rightarrow y=-2; z=-3$
$\Rightarrow x+y-z=(-1)+(-2)-(-3)=0$
Vậy $x+y-z=0$
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)và \(x^2+y^2+z^2=14\) tính x,y,z
Tìm x, y, z biết: \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}vàx^2+y^2+z^2=14\)
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Leftrightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Leftrightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{3}\)
Đến đây tự làm được rồi nhé !
=>\(\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\)=>\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)=>\(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)
Ap dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}=\frac{14}{56}=\frac{1}{4}\)(Vì x2+y2+z2=14)
=>\(\frac{x^2}{2^2}=\frac{1}{4}=>x^2=1=>x^2=1;x=-1\)
=>\(\frac{y^2}{4^2}=\frac{1}{4}=>y^2=4=>y=2;y=-2\)
=>\(\frac{z^2}{6^2}=\frac{1}{4}=>z^2=9=.z=3;z=-3\)
Vậy x=1 ; y=2 ; z=3 hoặc x=-1 ; y=-2 ; z=-3
Tìm x;y;z biết :
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)và \(x^2+y^2+z^2=14\)