tìm 2 số tự nhiên a và b thỏa mãn:(a,b)+[a,b]=55
a) Tìm số tự nhiên a,b thỏa mãn 10 mũ a+483=b mũ 2
b) Tìm các số tự nhiên a, b,c thỏa mãn: a mũ 2+ab+ác=20×ab+b mũ 2+BC=180×ac+BC+c mũ 2=200
a) \(10^a+483=b^2\) (*)
Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)
Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.
(Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)
b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))
tìm 2 số tự nhiên a và b thỏa mãn (a+b).(a-b) =2014
Tìm cặp số tự nhiên a và b thỏa mãn a/2+b/3=a+b/5
Tìm số tự nhiên để là số tự nhiên.
Cho các số a, b thỏa mãn a + b = 2 và a.b = - 2. Tính a7 + b7.
a: Để A là số tự nhiên thì \(n+8\in\left\{8;9;12;18;24;36;72\right\}\)
hay \(n\in\left\{0;1;3;10;18;28;64\right\}\)
a) Tìm số tự nhiên n biết (4n+2) ⋮ (n+1)
b) Tìm các số nguyên a và b thỏa mãn: (a+2).(b-1)=9
Cíuuu tuiiii
a: =>4n+4-2 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
b: \(\Leftrightarrow\left(a+2;b-1\right)\in\left\{\left(1;9\right);\left(9;1\right);\left(-1;-9\right);\left(-9;-1\right);\left(3;3\right);\left(-3;-3\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(-1;10\right);\left(7;2\right);\left(-3;-8\right);\left(-11;0\right);\left(1;4\right);\left(-5;-2\right)\right\}\)
tìm các số tự nhiên a b c thỏa mãn 2 điều kiện 16<a<b và 20>c>b
` 16<a<b`
`20>c>b`
`=>16<a<b<b<20/
`=> a= 17`
`b = 18`
`c = 19`
Tìm 2 số tự nhiên a,b thỏa mãn :
a+2b=48 và (a,b)+3[a,b]=114
Gọi d=ƯCLN(a,b).
Suy ra a=dm,b=dn với ƯCLN(m,n)=1. Khi đó BCNN(a,b)=ab:d=mnd
Ta có:a+2b=48. (1)
ƯCLN(a,b)+3BCNN(a,b)=114. (2)
Từ (1) và (2) suy ra :
d(m+2n)=4. (1)
d(1+3mn)=114. (2)
Từ (1) và (2) tiếp tục suy ra d thuộc ƯC(48;114)={1;2;3;6}.
+Nếu d=1 thì :m+2n=48
3mn+1=114
Suy ra m+2n=48
3mn=113(loại vì 113 không chia hết cho 3)
+Nếu d=2 thì m+2n=24
3mn+1=57
Suy ra m+2n=24 và 3mn=56(loại vì 56 không chia hết cho 3)
+Nếu d=3 thì m+2n=16
3mn+1=38
Suy ra m+2n=16 và 3mn=37(loại vì 37 không chia hết cho 3)
+Nếu d=6 thì m+2n=8
3mn+1=19
Suy ra m+2n=16 và mn=6.
Vì ƯCLN(m,n)=1 nén ta có:
M | 6 | |
N | 1 | |
A | 36 | |
B |
Tìm 2 số tự nhiên a,b thỏa mãn :
a+2b=48 và (a,b)+3[a,b]=114
Tìm 2 số tự nhiên a,b thỏa mãn điều kiện : a+b = 48 và ƯCLN( a; b ) + 3* BCNN( a; b) = 114