a: Để A là số tự nhiên thì \(n+8\in\left\{8;9;12;18;24;36;72\right\}\)
hay \(n\in\left\{0;1;3;10;18;28;64\right\}\)
a: Để A là số tự nhiên thì \(n+8\in\left\{8;9;12;18;24;36;72\right\}\)
hay \(n\in\left\{0;1;3;10;18;28;64\right\}\)
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a2 - b, b2 - c, c2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n2- 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a2 + 3b; b2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a2 + b2 + c2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
6. Cho các số nguyên (a -b)2 = a + 8b -16. CMR a là số chính phương.
7. Tìm các số tự nhiên m, n thỏa mãn 4m - 2m+1 = n2 + n + 6
Cho \(a\) và \(b\) là các số tự nhiên thỏa mãn \(2a^2+2=3b^2+b\). Chứng minh rằng: \(a-b\) và \(3a+3b+1\) là các số chính phương.
cho a và b là các số tự nhiên thỏa mãn 2a2 +a =3b2+b.cmr a-b và 3a+3b+1 là các số chính phương
1, Tìm số tự nhiên n lớn nhất để n3 + 100 chia hết cho n + 10
2, Tìm các số tự nhiên p để tổng tất cả các ước số tự nhiên của p4 là 1 số chính phương
3, CM: a3 + b3 + c3 \(⋮\)9 thì abc\(⋮\)3
4, Tìm n để A là số chính phương: A = ( n + 3 )( 4n2 + 14n + 7 )
5, Tìm các cặp ( x,y ) thỏa mãn: 5x2 + 12xy + 8y2 - 4x - 4y = 33
6, Tìm a,b ( nguyên dương ) để \(\frac{a^2+b}{b^2-a},\frac{b^2 +a}{a^2-b}\)là số nguyên
Cho a và b là các số tự nhiên thỏa mãn 2a2 + a = 3b2 + b.
Chứng minh rằng: (a - b) và (3a + 3b + 1) là các số chính phương.
Cho a,b là các số tự nhiên thỏa mãn 2a2+a = 3b2+b.
CMR: a-b và 2a+2b+1 đều là số chính phương ?
cho a và b là các số tự nhiên thỏa mãn a^2+b^2 chia hết 7. chứng minh rằng a và b đều chia hết cho 7