Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Ý Linh
Xem chi tiết
Phạm Quang Lộc
30 tháng 1 2022 lúc 18:16

hello

Ngô Linh
Xem chi tiết
N.T.M.D
Xem chi tiết
Nguyễn Thảo Vân
Xem chi tiết
Nguyệt Vãn Ẩn
Xem chi tiết
Ngô Linh
Xem chi tiết
Vũ Việt Hà
7 tháng 10 2017 lúc 19:04

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

Thành Nam Vũ
22 tháng 1 2023 lúc 9:39

Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)

<=> 9=m2-n2

<=> 9=(m-n)(m+n)

Vì n thuộc N => m-n thuộc Z, m+n thuộc N

=> m-n,m+n thuộc Ư(9)

mà m+n>m-n

nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)

 Vậy A là SCP <=>n=4

cfefwe
Xem chi tiết
goo hye sun
Xem chi tiết
Trương Minh Tiến
13 tháng 12 2017 lúc 21:01

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

Thanh Tùng DZ
13 tháng 12 2017 lúc 21:03

ta có nhận xét với n \(\ge\)5 thì n! có tận cùng là 0. 

Do đó A = 1! + 2! + 3! + ... + n! với n \(\ge\)5 sẽ có tận cùng là 3 . ( 1! + 2! + 3! + 4! = 33 ) 

A có tận cùng là 3 \(\Rightarrow\)A không phải là số chính phương

Bằng phép thử với n = 1,2,3,4 ta có hai đáp số 

n = 1 \(\Rightarrow\)A = 1 = 12

n = 3 \(\Rightarrow\)A = 9 = 32

Lê Minh Tú
13 tháng 12 2017 lúc 21:04

Ta có: 1! = 1 SCP

           1! + 2! = 3 không phải là SCP

           1! + 2! + 3! = 9 SCP 

           1! + 2! + 3! + 4! = 33 không phải là SCP

Ta thấy: 5!; 6!; đều có số tận cùng là 0

=> 1! + 2! + 3! + ... + n! có tận cùng là 3 không phải là SCP

Vậy: n = 13

P/s: SCP = Số Chính Phương, ok hiểu?

Đức Nguyễn
Xem chi tiết
Thắng Nguyễn
24 tháng 12 2015 lúc 20:12

Đặt 1!+2!+...+n!=p2
Nếu n≥4 .
Ta có m!⋮5∀m≥5 suy ra
5!+6!+...+m! chia hết cho 5 với mọi m>4
1!+2!+3!+...+n!≡1!+2!+3!+4!≡33≡3(mod5)
Ta có số chính phương chia 5 dư 0 hoặc 1,-1 nên 1!+2!+...+n!≠p2 với n≥4
Vậy n<4
*Nếu n=3.Ta có 1!+2!+3!=32 thỏa
* Nếu n=2 thì 1!+2!=3 không phải là số chính phương
*Nếu n=1 thì 1!=1 là số chính phương
Vậy n=1,n=3

tick nhé

Hải Anh Ngô
Xem chi tiết