Bài 3: cho g(z)= 3z-4. Tính: g(0); g(1); g(2); g(-1); g(-2).
Bài 1:
a)So sánh \(\left(\dfrac{3}{4}\right)^{2021}+1với\dfrac{3}{4}+1\)
b)Cho x,y,z khác 0 thỏa mãn
\(\dfrac{2x-3}{5}=\dfrac{5y-2z}{3}=\dfrac{3z-5x}{2}\)
Tính GTBT: B=\(\dfrac{12x-5y-3z}{x-3y+2z}\)
help me ai nhanh nhất mik tích cho
a) Ta có: \(\left(\dfrac{3}{4}\right)^{2021}>\left(\dfrac{3}{4}\right)^1=\dfrac{3}{4}\)
\(\Leftrightarrow\left(\dfrac{3}{4}\right)^{2021}+1>\dfrac{3}{4}+1\)
Cho x,y,z,t là các số thực thỏa mãn: x >= y >= z >= t >= 0 và 5x + 4y + 3z + 6t = 20. Tìm GTNN và GTLN của G = x + y + z + t
(Bài này mình ko biết xài nhóm abel kiểu gì, mong các bạn giúp đỡ)
A,Tìm y biết 1+3y/5x =4+7y/15=1+2y/8
B, tìm x,y,z biết 2x=3y,7z=5x và 3x-7y+5z=80
C,cho 3x-2y/4=2z-4x/3=4y-3z/2 c/m x/2=y/3=z/4
D, cho a,b,c not=0 thỏa mãn a+b-c/c=b+c-a/a=c+a-b/b tính B= (1+b/d)(1+a/c)(1+c/b)
E, cho x/3=y/4,y/5= z/6 và 2x + 3y + 4z= 372 tính A = 3x + 4y+5z
G, tính Q=6b-5a/5a+6b
cho x y z khác 0 và x - 2y + 3z = 0
tính N = ( 1 + 3z/x)(2 - x/y )( 3 - 2y/z )
cho x+y+z=6;x,y,z>0.Min\(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\)
Áp dụng trực tiếp bất đẳng thức Cauchy-Schwarz dạng Engel:
\(VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)+2\left(x+y+z\right)+3\left(x+y+z\right)}=1\)
Dấu bằng xảy ra khi \(x=y=z=2\)
Áp dụng BĐT AM - GM cho 2 số dương, ta được: \(\frac{x^2}{x+2y+3z}+\frac{1}{36}\left(x+2y+3z\right)\ge2\sqrt{\frac{x^2}{x+2y+3z}.\frac{1}{36}\left(x+2y+3z\right)}=\frac{1}{3}x\Rightarrow\frac{x^2}{x+2y+3z}\ge\frac{11}{36}x-\frac{1}{18}y-\frac{1}{12}z\)Tương tự, ta có: \(\frac{y^2}{y+2z+3x}\ge\frac{11}{36}y-\frac{1}{18}z-\frac{1}{12}x\); \(\frac{z^2}{z+2x+3y}\ge\frac{11}{36}z-\frac{1}{18}x-\frac{1}{12}y\)
Cộng theo vế của 3 bất đẳng thức trên, ta được: \(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\ge\frac{1}{6}\left(x+y+z\right)=1\)
Đẳng thức xảy ra khi x = y = z = 2
Bài 1:Tìm x;y;z biết:
x:y:z=3:4:5 và 2x^2+2y^2-3z^2
Bài 2:Cho a/b=b/c=c/a và a+b+c khác 0
Tính A=a^49*b^51/c^100
Bài 3:Tìm số nguyên x;y;z;t biết
|x-y|+|y-z|+|z-t|+|t-x|=-2011
Cảm ơn các bạn
Bài 1 : x/3 = y/4 = z/5 => x²/9 = y²/16 = z²/25
=> 2x²/18 = 2y²/32 = 3z²/75
=> x²/9 = (2x² + 2y² - 3z²)/(18 + 32 - 75) = - 100/(-25) = 1/4
=> x²/9 = 1/4 => x² = 9/4 => x = ±3/2
y²/16 = 1/4 => y² = 4 => y = ± 2
z²/25 = 1/4 => z² = 25/4 => z = ±5/2
Mà x, y, z cùng dấu.
Vậy (x ; y ; z) = (3/2 ; 2 ; 5/2) , (-3/2 ; -2 ; -5/2)
B3 ko tìm được x,y,z thỏa mãn do kết quả là 1 số không dương
Bài 1 :
Cho \(D=\frac{x+2y-3z}{x-2y+3z}\)
Tính D biết x,y,z tỉ lệ với 5 : 4 : 3
Ta có : \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)
\(\Rightarrow x=5k\); \(y=4k\); \(z=3k\)
\(\Rightarrow D=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2\left(4k\right)-3\left(3k\right)}{5k-2\left(4k\right)+3\left(3k\right)}\)
\(D=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}\)
VẬY, \(D=\frac{2}{3}\)
cho x;y;z>0,biết x+y+z=0.tính Min của A=x4+2y4+3z4
cho x;y;z>0,biết x+y+z=0.tính Min của A=x4+2y4+3z4