Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
1st_parkour
Xem chi tiết
Nguyễn Ngọc Anh Minh
28 tháng 4 2017 lúc 15:48

Đặt vế trái của Bất đẳng thức la A

\(A< \frac{1}{8}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}.\)

\(A< \frac{1}{8}+\frac{3}{10}+\frac{3}{40}=\frac{3}{10}< \frac{5}{10}=\frac{1}{2}\)

Nguyễn Anh Tú
12 tháng 8 2017 lúc 19:47

hhhhhhhhh

Kaito Fanny
26 tháng 4 2018 lúc 19:16

Ta thấy: \(\frac{1}{8}< \frac{1}{2}\)

             \(\frac{1}{11}< \frac{1}{2}\)

              \(\frac{1}{12}< \frac{1}{2}\) 

              \(\frac{1}{13}< \frac{1}{2}\)

              \(\frac{1}{41}< \frac{1}{2}\)

               \(\frac{1}{42}< \frac{1}{2}\)

               \(\frac{1}{43}< \frac{1}{2}\)

=> \(\frac{1}{8}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{41}+\frac{1}{42}+\frac{1}{43}< \frac{1}{2}\)

Nguyễn Phương Linh
Xem chi tiết
H.anhhh(bep102) nhận tb...
27 tháng 3 2022 lúc 11:21

\(A = (\frac{1}{10} + ...+ \frac{1}{19} ) + (\frac{1}{20} + ...+ \frac{1}{29}) + (\frac{1}{30} +...+ \frac{1}{39} ) + (\frac{1}{40} + ...+\frac{1}{49} ) + (\frac{1}{50} +....+ \frac{1}{59}) + (\frac{1}{60} + ....+\frac{1}{69}) + \frac{1}{70}\)

Ta có : mỗi bên có 10 số hạng

\( (\frac{1}{10} + ..+ \frac{1}{19}) < (\frac{1}{10} + ...+ \frac{1}{10}) = \frac{1}{1}\)

\(\frac{1}{20}+..+ \frac{1}{29} < (\frac{1}{20}+..+\frac{1}{20}) = \frac{1}{2}\)

\((\frac{1}{30} +...+ \frac{1}{39} )< (\frac{1}{30} +...+ \frac{1}{30}) = \frac{1}{3}\)

\((\frac{1}{40} + ...+\frac{1}{49} )< (\frac{1}{40} + ...+\frac{1}{40}) = \frac{1}{4}\)

\((\frac{1}{50} +....+ \frac{1}{59})< (\frac{1}{50} +....+ \frac{1}{50}) = \frac{1}{5}\)

\((\frac{1}{60} + ....+\frac{1}{69}) + \frac{1}{70}< (\frac{1}{60} + ....+\frac{1}{60})+ \frac{1}{70} = \frac{1}{6} +\frac{1}{70}\)

\(\implies A < 1+\frac{1}{2} + ...+ \frac{1}{6} + \frac{1}{70}= \frac{13}{15} + \frac{1}{70} <1<\frac {51}{20} \)

\(\implies A<\frac{51}{20}\) \((đpcm)\)

Khách vãng lai đã xóa
Hoa Nguyễn
16 tháng 4 2023 lúc 8:15

Ko bt

Sakura kun
Xem chi tiết
ST
11 tháng 5 2017 lúc 19:47

A = \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)\)

Ta có: \(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};....;\frac{1}{59}>\frac{1}{60}\)

\(\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\)(1)

Lại có: \(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};....;\frac{1}{79}>\frac{1}{80}\)

\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\)(2)
Cộng (1) và (2) lại ta được:

\(A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)(đpcm)

Ngô Hà Vy
Xem chi tiết
Thao Nhi
1 tháng 5 2016 lúc 21:26

\(\frac{1}{8}=\frac{1}{8}\)

\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}<\frac{3}{10}\)

\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}<\frac{3}{40}\)

-> A <\(\frac{1}{8}+\frac{3}{10}+\frac{3}{40}=\frac{20}{40}=\frac{1}{2}\)

pham thi ho
26 tháng 4 2019 lúc 20:06

A<1/2 nhé!

phamphuckhoinguyen
Xem chi tiết
Phương Anh
Xem chi tiết
Phạm Nguyễn Tiểu My
27 tháng 4 2016 lúc 20:46

Ta có: 
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80 

1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80) 

Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60 

và 1/61> 1/62> ... >1/79> 1/80 
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80 

Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12 

=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12

Phương Anh
27 tháng 4 2016 lúc 21:41

thanks Phạm Nguyễn Tiểu My nha

☆⩸Moon Light⩸2k11☆
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 0:29

B=(1/11+1/12+...+1/20)+(1/21+...+1/30)+(1/31+1/32+...+1/40)+...+(1/61+1/62+...+1/70)

=>B<1/10*10+1/20*10+...+1/60*10

=>B<1+1/2+...+1/6

=>B<1+1/2+1/3+1/6+1/4+1/5
=>B<5/2

Le Thi Thu Trang
Xem chi tiết
shushi
Xem chi tiết
Arima Kousei
25 tháng 3 2018 lúc 16:35

Tham khảo câu hỏi của Nguyễn Bá Thành ở ngay bên dưới 

Chúc học giỏi !!!