\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=1\frac{2013}{2015}\)
tìm x, biết
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{2013}{2015}\)
2/6+2/12+2/20+...+2/x.(x+1)=2013/2015
2.[1/6+1/12+1/20+...+1/x.(x+1)]=2013/2015
1/2.3+1/3.4+1/4.5+...+1/x.(x+1)=2013/4030
1/2-1/3+1/3-1/4+...+1/x-1/x+1=2013/4030
1/2-1/x+1=2013/4030
1/x+1=1/2015
=> x+1=2015
x=2014
Vậy x=2014
Đặt A=Vế trái
Ta có :
\(A \over 2 \)\(= \)\({1\over 6 } +{1\over 12 }+{1\over 20 }+...+{1\over x(x+1)}\)
=\({1\over 2}-{1\over 3}+{1\over 3}-{1\over 4}+{1\over4}-{1\over 5}+...+{1\over x-1}-{1\over x}+{1\over x}-{1\over x+1}\)
=\({1\over2}-{1\over x+1}\)
Từ đó suy ra: \({1\over2}-{1\over x+1}={2013\over4030}\)
=> x=2014
a,\(\frac{2}{3}x-\frac{3}{2}\left(x-\frac{1}{2}\right)=\frac{5}{12}\)
b,\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\)
AI GIAI DUOC MINH TICK CHO.NHO GIAI CHI TIET NHA
b,\(\Rightarrow\)\(\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right):2=\frac{2013}{2015}:2\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)
\(\Rightarrow\)\(x+1=2015\)
\(\Rightarrow x=2014\)
a, 2/3x -3/2.x-1/2x=5/12
x.(2/3-3/2-1/2)=5/12
x. -4/3=5/12
x=5/12:-4/3
x=-5/16
b,2/6+2/12+2/20+...+2/x.(x+1)=2013/2015
2/2.3+2/3.4+2/4.5+...+2/x.(x+1)=2013/2015
1/2(1-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)=2013/2015
1/2(1-1/x+1)=2013/2015
1-1/x+1=2013/2015 : 1/2
1-1/x+1=4206/2015
suy ra đề sai
Tìm x biết:\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....\frac{1}{\chi\left(\chi+1\right):2}=\frac{2013}{2015}\)
\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2013}{2015}\)
\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2013}{2015}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{2015}:2\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2013}{4030}\)
\(\frac{1}{x+1}=\frac{1}{2015}\)
=>x+1=2015
=>x=2014
Tìm x thoả mãn:
a)\(\frac{1}{2}x-\frac{3}{4}x-\frac{7}{3}=-\frac{5}{6}\)
b)\(\frac{4}{5}x-x-\frac{3}{2}x+\frac{4}{3}=\frac{1}{2}-\frac{6}{5}\)
c)\(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{x.\left(x+1\right)}=\frac{2009}{2010}\)
d)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)
e)\(\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{100}{609}\)
mk làm câu c cho nó dễ
c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010
=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010
=1-1/x+1=2009/2010
=1/x+1=1-2009/2010
=1/x+1=1/2010
=) x+1=2010
x =2010-1
x =2009
Đề cho dài :v. Lần sau đăng từ từ nhé bạn, hôm qua đến giờ mình giải không hết đó =(((
a) \(\frac{1}{2}.x-\frac{3}{4}.x-\frac{7}{3}=-\frac{5}{6}=\frac{-5}{6}\)
\(\frac{1}{2}.x-\frac{3}{4}.x=\frac{-5}{6}+\frac{7}{3}=\frac{3}{2}\)
\(\Leftrightarrow x\left(\frac{1}{2}-\frac{3}{4}\right)=\frac{3}{2}\Leftrightarrow x.\frac{-1}{4}=\frac{3}{2}\)
\(x=\frac{3}{2}:\frac{-1}{4}=-6\)
b) \(\frac{4}{5}.x-x-\frac{3}{2}.x+\frac{4}{3}=\frac{1}{2}-\frac{6}{5}=-\frac{7}{10}\)
\(\Leftrightarrow x\left(\frac{4}{5}-\frac{3}{2}.\frac{4}{3}\right)=x\left(\frac{4}{5}-2\right)=-\frac{7}{10}\)
\(\Leftrightarrow x.\frac{-6}{5}=-\frac{7}{10}\)
\(x=-\frac{7}{10}:\frac{-6}{5}=\frac{7}{12}\)
c) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2010}\)
\(=1-\frac{1}{x+1}=\frac{2009}{2010}\)
\(\frac{1}{x+1}=1-\frac{2009}{2010}=\frac{1}{2010}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2010-1}=\frac{1}{2009}\). Vậy x= 2009
d) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}=\frac{4023}{2015}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4023}{2015}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{4023}{2015}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4023}{2015}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{4023}{2015}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{4023}{2015}:2=\frac{4023}{4030}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{4023}{4030}=\frac{-1004}{2015}=\frac{1004}{-2015}\)
\(x+1=\hept{\begin{cases}2015\\-2015\end{cases}}\Rightarrow x=\hept{\begin{cases}2014\\-2016\end{cases}}\)
e) Bạn tự làm, nhiều quá mình làm không hết
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)
làm gấp nah!
dễ tui làm nhớ cho
nhân mỗi cái phân số với 2/2(p/số ko đổi) trừ p/số cuối cùng
phân phối:1/2.(1/2.3+1/3.4+...+1/x.(x+1))=1/2013/2015
=(1/2-1/x+1)=...
hết rồi tự tính tiếp
\(A=\left(6:\frac{3}{5}-1\frac{1}{6}x\frac{6}{7}\right):\left(4\frac{1}{5}x\frac{10}{11}+5\frac{2}{11}\right)\)\(B=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{4}\right)x.......x\left(1-\frac{1}{2015}\right)x\left(1-\frac{1}{2016}\right)\)
\(C=5\frac{9}{10}:\frac{3}{2}-\left(2\frac{1}{3}x4\frac{1}{2}-2x2\frac{1}{3}\right):\frac{7}{4}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{2013}{2015}\)
Tính nhanh
\(1+\frac{1}{3}+\frac{1}{6}+......+\frac{2}{\left(X+1\right)\left(X+2\right)}=1\frac{2013}{2015}\)
\(1+\frac{1}{3}+\frac{1}{6}+..+\frac{2}{\left(x+1\right)\left(x+2\right)}=1\frac{2013}{2015}\)
\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+..+\frac{2}{\left(x+1\right)\left(x+2\right)}=\frac{4028}{2015}\)
\(2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x+1}-\frac{1}{x+2}\right)=\frac{4028}{2015}\)
\(1-\frac{1}{x+2}=\frac{4028}{2015}:2\)
\(1-\frac{1}{x+2}=\frac{2014}{2015}\)
\(\frac{1}{x+2}=1-\frac{2014}{2015}\)
\(\frac{1}{x+2}=\frac{1}{2015}\)
\(\Rightarrow x+2=2015\)
\(\Rightarrow x=2013\)