Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ichigo
Xem chi tiết
lê vũ an
Xem chi tiết
Nguyễn Phương Thảo
5 tháng 5 2016 lúc 20:42

2/6+2/12+2/20+...+2/x.(x+1)=2013/2015

2.[1/6+1/12+1/20+...+1/x.(x+1)]=2013/2015

1/2.3+1/3.4+1/4.5+...+1/x.(x+1)=2013/4030

1/2-1/3+1/3-1/4+...+1/x-1/x+1=2013/4030

1/2-1/x+1=2013/4030

1/x+1=1/2015

=> x+1=2015

     x=2014

Vậy x=2014

Khánh Nguyên
5 tháng 5 2016 lúc 20:51

Đặt A=Vế trái

Ta có :

\(A \over 2 \)\(= \)\({1\over 6 } +{1\over 12 }+{1\over 20 }+...+{1\over x(x+1)}\)

   =\({1\over 2}-{1\over 3}+{1\over 3}-{1\over 4}+{1\over4}-{1\over 5}+...+{1\over x-1}-{1\over x}+{1\over x}-{1\over x+1}\)

   =\({1\over2}-{1\over x+1}\)

Từ đó suy ra: \({1\over2}-{1\over x+1}={2013\over4030}\)

=> x=2014

cô gái lạnh lùng
Xem chi tiết
Luu Phan Hai Dang
21 tháng 3 2019 lúc 22:00

 b,\(\Rightarrow\)\(\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right):2=\frac{2013}{2015}:2\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2013}{4030}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2013}{4030}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{4030}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{4030}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)

\(\Rightarrow\)\(x+1=2015\)

\(\Rightarrow x=2014\)

Nguyễn Hùng Cường
21 tháng 3 2019 lúc 22:06

a, 2/3x -3/2.x-1/2x=5/12

    x.(2/3-3/2-1/2)=5/12

                 x. -4/3=5/12

                          x=5/12:-4/3

                          x=-5/16

b,2/6+2/12+2/20+...+2/x.(x+1)=2013/2015

   2/2.3+2/3.4+2/4.5+...+2/x.(x+1)=2013/2015

   1/2(1-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)=2013/2015

                                                1/2(1-1/x+1)=2013/2015

                                                 1-1/x+1=2013/2015 : 1/2

                                                  1-1/x+1=4206/2015

                                                      suy ra đề sai

                                                

                                                       

Le Thi Kieu Trinh
Xem chi tiết
Thắng Nguyễn
10 tháng 5 2016 lúc 16:25

\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2013}{2015}\)

\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2013}{2015}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{2015}:2\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2013}{4030}\)

\(\frac{1}{x+1}=\frac{1}{2015}\)

=>x+1=2015

=>x=2014

oOo VRCT_Mouri Ran_BGS o...
10 tháng 5 2016 lúc 16:34

=2014 k mk đi

Louis Pasteur
10 tháng 5 2016 lúc 17:20

\(x=2014\)

Nguyen Tung Lam
Xem chi tiết
Luyện Văn Thịnh
25 tháng 3 2018 lúc 20:19

x=2009 dễ mà

chu le anh duong
23 tháng 3 2018 lúc 21:25

mk làm câu c cho nó dễ

c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010

=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010

=1-1/x+1=2009/2010

=1/x+1=1-2009/2010

=1/x+1=1/2010

=) x+1=2010

x         =2010-1

x         =2009

tth_new
24 tháng 3 2018 lúc 15:27

Đề cho dài :v. Lần sau đăng từ từ nhé bạn, hôm qua đến giờ mình giải không hết đó =(((

a) \(\frac{1}{2}.x-\frac{3}{4}.x-\frac{7}{3}=-\frac{5}{6}=\frac{-5}{6}\)

\(\frac{1}{2}.x-\frac{3}{4}.x=\frac{-5}{6}+\frac{7}{3}=\frac{3}{2}\)

\(\Leftrightarrow x\left(\frac{1}{2}-\frac{3}{4}\right)=\frac{3}{2}\Leftrightarrow x.\frac{-1}{4}=\frac{3}{2}\)

\(x=\frac{3}{2}:\frac{-1}{4}=-6\)

b) \(\frac{4}{5}.x-x-\frac{3}{2}.x+\frac{4}{3}=\frac{1}{2}-\frac{6}{5}=-\frac{7}{10}\)

\(\Leftrightarrow x\left(\frac{4}{5}-\frac{3}{2}.\frac{4}{3}\right)=x\left(\frac{4}{5}-2\right)=-\frac{7}{10}\)

\(\Leftrightarrow x.\frac{-6}{5}=-\frac{7}{10}\)

\(x=-\frac{7}{10}:\frac{-6}{5}=\frac{7}{12}\)

c) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2010}\)

\(=1-\frac{1}{x+1}=\frac{2009}{2010}\)

\(\frac{1}{x+1}=1-\frac{2009}{2010}=\frac{1}{2010}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2010-1}=\frac{1}{2009}\). Vậy x= 2009

d) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}=\frac{4023}{2015}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4023}{2015}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{4023}{2015}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4023}{2015}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{4023}{2015}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{4023}{2015}:2=\frac{4023}{4030}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{4023}{4030}=\frac{-1004}{2015}=\frac{1004}{-2015}\)

\(x+1=\hept{\begin{cases}2015\\-2015\end{cases}}\Rightarrow x=\hept{\begin{cases}2014\\-2016\end{cases}}\)

e) Bạn tự làm, nhiều quá mình làm không hết

Bii Hâm
Xem chi tiết
Cô Đơn Một Chú Mèo
4 tháng 4 2016 lúc 22:04

dễ tui làm nhớ cho

nhân mỗi cái phân số với 2/2(p/số ko đổi) trừ p/số cuối cùng

phân phối:1/2.(1/2.3+1/3.4+...+1/x.(x+1))=1/2013/2015

=(1/2-1/x+1)=...

hết rồi tự tính tiếp

Ngọc Ánh
Xem chi tiết
truong lan trinh
Xem chi tiết
oOo Hello the world oOo
Xem chi tiết
Nguyễn Tiến Dũng
10 tháng 9 2017 lúc 10:07

\(1+\frac{1}{3}+\frac{1}{6}+..+\frac{2}{\left(x+1\right)\left(x+2\right)}=1\frac{2013}{2015}\)

\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+..+\frac{2}{\left(x+1\right)\left(x+2\right)}=\frac{4028}{2015}\)

\(2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x+1}-\frac{1}{x+2}\right)=\frac{4028}{2015}\)

\(1-\frac{1}{x+2}=\frac{4028}{2015}:2\)

\(1-\frac{1}{x+2}=\frac{2014}{2015}\)

\(\frac{1}{x+2}=1-\frac{2014}{2015}\)

\(\frac{1}{x+2}=\frac{1}{2015}\)

\(\Rightarrow x+2=2015\)

\(\Rightarrow x=2013\)