Đ̀Ố AI LAM DK BAI NAY (trong de thi hoc sinh gioi cap truong cua mk day)
cho tam giac ABC VUONG TAI A, BM=CM, tren tia doi cua MA lay D sao cho AM=MD. BI,CK vuong goc voi AD. MN vuong goc voi AC. Chung minh KN be hon MC
Cho tam giac ABC can tai A. Tren tia doi cua tia BC lay diem D, tren tia doi cua tia CB lay diem E sao cho BD = CE.
a) CM: tam giac ADE can.
b) Goi M la trung diem cua BC. CM: AM la tia phan giac cua goc DAE va AM vuong DE.
c) Tu B ke BH vuong goc AD (H€AD). Tu C ke CK vuong goc AE (K€AE). CM: BH=CK.
d) CM: Ba duong thang AM,BH,CK gap nhau tai mot diem.
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
bai 1co tam giac abc can tai a tren tia doi cua cac tia bc va cb lay hai diem d va e sao cho ce = bd goi m la trung diem cua bc tu b va c ke bh vuong goc voi ad va ck vuong goc voi ae .cm 3 dt bh ck va am cung di qua mot diem
bai 2 cho tam giac abc vuong tai a goc c bang 30 do duong cao ah tren doan hc lay diem d sao cho hd=hb tu c ke ce vuong goc voi ad cmr
a, tam giac abd deu
b,eh song song voi ac
bai 3 cho tam giac abc co goc a = 90 do qua a ke dt d tu b va c ke bd vuong goc voi dt d va ce vuong goc voi dt d tinh do dai de theo bd va ce
bai 4 cho tam giac abc vuong tai a hai duong phan giac bm va cn tu m va n ke mmphay va nnphay vuong goc voi bc cmr goc mphayanphay bang 45 do
Cho Tam giac ABC can tai A , tren tia doi cua BC lay diem D , tren tia doi cua CB lay diem E sao cho BD = CE . Tu B ke BM vuong goc voi AD , tu C ke CN vuong goc voi AE , MB cat NC tai K
a,c/m AD = AE
b,c/m tam gic BMD = tam giac CNE
c, c/m AM = AN
d,c/m tam giac KMN la tam giac can
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
b: Xét ΔBMD vuông tại M và ΔCNE vuông tại N có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔBMD=ΔCNE
c: Ta có: ΔBMD=ΔCNE
nên BM=CN
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
BM=CN
Do đó: ΔAMB=ΔANC
Suy ra: AM=AN
Cho Tam giac ABC can tai A , tren tia doi cua BC lay diem D , tren tia doi cua CB lay diem E sao cho BD = CE . Tu B ke BM vuong goc voi AD , tu C ke CN vuong goc voi AE , MB cat NC tai K
a,c/m AD = AE
b,c/m tam gic BMD = tam giac CNE
c, c/m AM = AN
d,c/m tam giac KMN la tam giac can
a. xét tam giác ABD và tam giác ACE, có:
BD = CE ( gt )
góc DBA = góc ECA ( 2 góc ngoài của tam giác cân )
AB = AC ( ABC cân )
Vậy tam giác ABD = tam giác ACE ( c.g.c )
=> AD = AE ( 2 cạnh tương ứng )
b.xét tam giác vuông BMD và tam giác vuông CNE, có:
BD = CE ( gt )
góc D = góc E ( tam giác ABD = tam giác ACE )
Vậy tam giác vuông BMD = tam giác vuông CNE ( cạnh huyền. góc nhọn)
c.xét tam giác vuông AMB và tam giác vuông ANC, có:
góc DAB = góc EAC ( tam giác ABD = tam giác ACE )
AB = AC ( ABC cân )
Vậy tam giác vuông AMB = tam giác vuông ANC( cạnh huyền. góc nhọn )
Cho Tam giac ABC can tai A , tren tia doi cua BC lay diem D , tren tia doi cua CB lay diem E sao cho BD = CE . Tu B ke BM vuong goc voi AD , tu C ke CN vuong goc voi AE , MB cat NC tai K
d,c/m tam giac KMN la tam giac can
d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)
\(\widehat{KCB}=\widehat{NCE}\)
mà \(\widehat{MBD}=\widehat{NCE}\)
nên \(\widehat{KBC}=\widehat{KCB}\)
hay ΔKBC cân tại K
=>KB=KC
Ta có: KB+BM=KM
KC+CN=KN
mà KB=KC
và BM=CN
nên KM=KN
=>ΔKNM cân tại K
cho tam giac ABC can tai A. Tren tia doi tia BC lay diem D. Tren tia doi cua tia CB lay diem E sao cho DB=CE.
a) c/m tam giac ABE can
b) ke BM vuong goc voi AD, CN vuong goc voi AE. C/m tam giac DMB=tam giac ENC
c) c/m MN sog sog DE
cho tam giac ABC vuong tai A , diem D thuoc canh huyen BC . Ke DH vuong goc voi AC (H thuoc AC ) ,tren tia doi cua tia HD lay diem K sao cho HK=HD. Ke DM vuong goc voi AB (M thuoc AB) ,tren tia doi cua tia MD lay diem N sao cho MN=MD. Chung minh A la trung diem cua NK
Cho tam giac ABC vuong tai A (AB lon hon AC) .Goi M la trung diem cua BC . Tren tia doi tia MA lay D sao cho MD=MA .
a, Cho AB = 8 cm ; BC = 10 cm . Tinh AC ?
b, C/m . tam giac AMB = tam giac DMC , tu do suy ra CD vuong goc voi AC
c, Ve AH vuong goc voi BC tai H , tren tia doi cua HA lay E sao cho HE=HA . C/M tam giac ACE can
d, c/m . BD=CE.
Cho tam giac abc can tai a ( Â < 90 độ ) . Vẽ AH vuong goc BC tai H . Kẻ HD vuong goc AB tai D , HE vuong goc AC tai E . TRen tia doi cua tia BA lay diem M sao cho BM = BM, Trên tia doi cua tia Ca lay diem N sao cho CE = CM . Hoi tam giac AMN la tam giac gì