tìm các giá trị nguyên của n để giá trị của biểu thức A là số nguyên
A = \(\frac{4n-2}{n-2}\)
tìm các giá trị nguyên của n để giá trị của biểu thức A là số nguyên: A=4n-2/n-2. Please help me, gấp
Để A là số nguyên thì 4n-2\(⋮\)n-2
=>n-2\(⋮\)n-2
=>4\(⋮\)n-2
=>n-2\(\in\)Ư(4)
hay n-2\(\in\){1;-1;2;-2;4;-4}
=>n={3;1;4;0;6;-2}
cái gì mà ối dồi ôi
Tìm số nguyên n để biểu thức A nhận giá trị nguyên
A= 2n+7/n-2
A= 3n+2/n-1
Tìm các giá trị nguyên của n để giá trị của A là số nguyên
A=\(\frac{4n-2}{n-2}\)
A là số nguyên khi
4n - 2 ⋮ n - 2
=> 4n - 8 + 6 ⋮ n - 2
=> 4(n - 2) + 6 ⋮ n - 2
=> 6 ⋮ n - 2
\(A=4n-2⋮n-2\)
\(\Rightarrow4n-8+6⋮n-2\)
\(\Rightarrow4(n-2)+6⋮n-2\)
Mà \(n-2⋮n-2\Rightarrow6⋮n-2\)
\(\Rightarrow n-2\inƯ(6)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Đến đây dễ tìm
+) Để A là phân số khi \(4n-2;n-2\inℤ\)
\(n-2\ne0\)
\(n\ne2\)
+) Để A có giá trị nguyên thì \(4n-2⋮n-2\)
\(4\left(n-2\right)+6⋮n-2\)
Mà \(n-2⋮n-2\)
Để \(4\left(n-2\right)+6⋮n-2\Rightarrow6⋮n-2\)
\(\Rightarrow n-2\inƯ\left(6\right)=\left\{-1;1;2;-2;3;-3;6;-6\right\}\)
\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
Vậy \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
Câu a,Cho biểu thức A= -5/n-2
1, tìm các số tự nhiên n để biểu thức A là phân số.
2, tìm các số tự nhiên n để biểu thức A là số nguyên
Câu b,Tìm giá trị nguyên của n để phân số A=3n+2/n-1có giá trị là số nguyên
Câu c, tìm các giá trị nguyên n để phân số A=4n+5/2n-1 có giá trị là số nguyên
Mng giải giúp mik vs ạ
Cho biểu thức A=-4n+2/2n-4 .a) Tìm điều kiện của n để A là phân số /b) Tìm các số nguyên n để A có giá trị nguyên (giúp mk vs ạ)
a) A là phân số <=>2n-4\(\ne0\)
<=>2n\(\ne\)4
<=>n\(\ne\)2
b)Với n\(\ne2\)
A=\(A=\dfrac{-4n+2}{2n-4}=\dfrac{-4n+8-6}{2n-4}=\dfrac{-2\left(2n-4\right)-6}{2n-4}=-2+\dfrac{-6}{2n-4}\)
A có giá trị nguyên <=>-6 chia hết cho 2n-4
<=>2n-4 là ước của -6
<=>2n-4\(\varepsilon\){-6;-3;-2;-1;1;2;3;6}
2n-4 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
2n | -2 | 1 | 2 | 3 | 5 | 6 | 7 | 10 |
n | -1 | 0.5 | 1 | 1.5 | 2.5 | 3 | 3.5 | 5 |
TM | KTM | TM | KTM | KTM | TM | KTM | TM |
Bài 1: Cho số hữu tỉ x = a - 5 ( a khác 0 )
Với giá trị nguyên nào của a thì x có giá trị nguyên
Bài 2: Tìm giá trị nguyên của a để các biểu thức sau có giá trị nguyên
A= 3a + 9/a - 4 B= 6a + 5/ 2a - 1
ta thấy rằng 5 phải chia hết cho a tức là
a(U)5=1,-1;5,-5
vậy a 1,-1,5,-5 thì x có giá trị nguyên
Tìm giá trị nguyên nhỏ nhất của n để biểu thức
D= \(\frac{4n-5}{n-2}\)có giá trị nguyên
a)tìm các giá trị nguyên n để phân số: M=4n-3/n+1 có giá trị là số nguyên
b) tìm giá trị lớn nhất của phân số K=\(\frac{2}{3+4n}\)trong đó n là số tự nhiên
\(Tacó\)
\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)
\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)
b, \(K=\frac{2}{3+4n}\)
\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)
tìm các giá trị nguyên của n để giá trị của biểu thức \(A=\dfrac{2n^2+3n+3}{2n-1}\) có giá trị là số nguyên
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)