Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenhongvan
Xem chi tiết
ngonhuminh
29 tháng 3 2017 lúc 17:35

\(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

đặt \(x^2+5x+5=t\)

\(\Leftrightarrow t^2-25=0\Rightarrow\left\{{}\begin{matrix}t=5\\t=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vu Hoang
Xem chi tiết
Không Tên
25 tháng 1 2018 lúc 20:59

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

Đặt   \(x^2+5x+4=a\)ta có:

                  \(a\left(a+2\right)-24\)

              \(=a^2+2a+1-25\)

              \(=\left(a+1\right)^2-25\)

              \(=\left(a-4\right)\left(a+6\right)\)

Thay trở lại ta được:

                  \(\left(x^2+5x\right)\left(x^2+5x+10\right)\)

Nguyễn Thị Thanh Hà
Xem chi tiết
Võ Thị Quỳnh Giang
20 tháng 7 2017 lúc 9:32

a)   ta có :(x-1)(x-2)(x+3)(x+4)=24

           <=>[(x-1)(x+3)].[(x-2)(x+4)] =24

          <=>(x^2 +2x -3)(x^2+2x -8)=24

         đặt x^2  +2x -3  =a =>  (x^2 +2x -3)(x^2 +2x-8)=a(a-5) =24

                                                                                 <=>a^2 -5a-24=0

                                                                                <=>(a-8)(a+3)=0  <=> a-8=0 hoặc a+3=0 <=>a=8 hoặc a=-3

+) với a=8 => x^2 +2x-3=8 <=>x^2 +2x-11=0<=>(x+1)^2 -10=0   (vô nghiệm)  vì (x+1)^2  >=0

+) với a=-3=>x^2 +2x-3=-3<=>x^2 +2x=0<=>x.(x+2)=0  <=> x=0 hoặc x+2=0 <=>x=0 hoặc x=-2

Vậy tập nghiệm của pt là S={0;-2}

Dương Thị Thu Hiền
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
qlamm
29 tháng 11 2021 lúc 10:16

bài nào ạ

Dương Thị Thu Hiền
29 tháng 11 2021 lúc 14:58

À vậy vui để c đăng lại nha.

Trúc Giang
29 tháng 11 2021 lúc 17:44

ĐK:...

\(\Leftrightarrow\dfrac{2x+3}{x-3}-\dfrac{4}{x+3}-\dfrac{24}{\left(x-3\right)\left(x+3\right)}-2=0\)

\(\Leftrightarrow\dfrac{\left(2x+3\right)\left(x+3\right)-4\left(x-3\right)-24-2\left(x^2-9\right)}{x^2-9}=0\)

\(\Leftrightarrow2x^2+6x+3x+9-4x+12-24-2x^2+18=0\)

\(\Leftrightarrow5x+15=0\)

<=> x = -3 (ko t/m đk)

=> Pt vô nghiệm

pé lầyy
Xem chi tiết
Minh Nguyen
29 tháng 2 2020 lúc 11:02

a) \(4\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow2^2\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow\left(2x+6\right)^2=\left(2x+6\right)^2\)

Vậy tập nghiệm của phương trình là \(S=ℝ\)

b) \(\left(3x+4\right)^2=4\left(x+3\right)\)

\(\Leftrightarrow9x^2+24x+16=4x+12\)

\(\Leftrightarrow9x^2+20x+4=0\)

\(\Leftrightarrow\left(9x+2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}9x+2=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{9}\\x=-2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{9};-2\right\}\)

c) \(\left(6x+3\right)^2=\left(x-4\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}6x+3=x-4\\6x+3=4-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x+7=0\\7x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{5}\\x=\frac{1}{7}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{7}{5};\frac{1}{7}\right\}\)

d) \(\left(x^2+3x+2\right)\left(x^2+3x+3\right)-2=0\)

Đặt \(t=x^2+3x+2\), ta có :

     \(t\left(t+1\right)-2=0\)

\(\Leftrightarrow t^2+t-2=0\)

\(\Leftrightarrow\left(t+2\right)\left(t-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+3x+4=0\\x^2+3x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\\\left(x+\frac{3}{2}\right)^2-1,25=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\sqrt{1,25}-\frac{3}{2}=-\frac{3\pm\sqrt{5}}{2}\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{3\pm\sqrt{5}}{2}\right\}\)

Khách vãng lai đã xóa
Minh Nguyen
29 tháng 2 2020 lúc 12:53

e)Đề bài sai ! Mik sửa :

 \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

Đặt \(t=x^2-5x\), ta có :

       \(t^2+10t-24=0\)

\(\Leftrightarrow\left(t+12\right)\left(t-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+12=0\\t-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+12=0\\x^2-5x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{5}{2}\right)^2+\frac{23}{4}=0\left(ktm\right)\\\left(x-\frac{5}{2}\right)^2-\frac{33}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\frac{\sqrt{33}}{2}+\frac{5}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{\sqrt{33}}{2}+\frac{5}{2};-\frac{\sqrt{33}}{2}+\frac{5}{2}\right\}\)

f) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+2\right)-12=0\)

Đặt \(t=x^2+x+1\), ta có :

    \(t\left(t+1\right)-12=0\)

\(\Leftrightarrow t^2+t-12=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+5=0\\x^2+x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}-\frac{1}{2}=1\left(tm\right)\\x=-\frac{3}{2}-\frac{1}{2}=-2\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)

g) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt \(t=x^2+x\), ta có :

     \(t\left(t-2\right)-24=0\)

\(\Leftrightarrow t^2-2t-24=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}-\frac{1}{2}=2\left(tm\right)\\x=-\frac{5}{2}-\frac{1}{2}=-3\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-3\right\}\)

h) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(t=x^2+5x+4\), ta có :

     \(t\left(t+2\right)-24=0\)

\(\Leftrightarrow t^2+2t-24=0\)

\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+6=0\\t-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+5x+10=0\\x^2+5x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\x\left(x+5\right)=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-5\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;-5\right\}\)

Khách vãng lai đã xóa
pé lầyy
29 tháng 2 2020 lúc 14:27

cảm ơn bn nha

Khách vãng lai đã xóa
blinkjin
Xem chi tiết
KAl(SO4)2·12H2O
30 tháng 7 2019 lúc 10:25

1) \(\frac{x}{x^2-1}+\frac{3}{x^2-2x-3}=\frac{x}{x^2-4x+3}\)

\(\Leftrightarrow\frac{x}{\left(x+1\right)\left(x-1\right)}+\frac{3}{\left(x-3\right)\left(x+1\right)}=\frac{x}{\left(x-3\right)\left(x-1\right)}\)

\(\Leftrightarrow x\left(x-3\right)+3\left(x-1\right)=x\left(x+1\right)\)

\(\Leftrightarrow x^2-3=x^2+x\)

\(\Leftrightarrow-3=x\)

\(\Leftrightarrow x=-3\)

Vậy: nghiệm phương trình là -3

Lily
30 tháng 7 2019 lúc 11:55

\(3,\text{ }\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)

\(\Rightarrow\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=0-16\)

\(\Rightarrow\text{ Có lẻ thừa số âm }\)

Mà \(\left(x+8\right)>\left(x+6\right)>\left(x+4\right)>\left(x+2\right)\)

Ta có hai trường hợp : 

\(TH\text{ }1\text{ :}\) Có một thừa số âm

\(\Rightarrow\text{ }\left(x+2\right)< 0\)

\(\Rightarrow\text{ }x< -2\)

\(TH\text{ }2\text{ : }\) Có 3 thừa số âm

\(\Rightarrow\text{ }\hept{\begin{cases}\left(x+2\right)< 0\\\left(x+4\right)< 0\\\left(x+6\right)< 0\end{cases}}\)                \(\Rightarrow\text{ }\left(x+2\right)< 0\text{ }\Rightarrow\text{ }x< -2\)

Si thì thôi nha ! Mong bạn thông cảm !

Nguyễn Dương Thành Đạt
Xem chi tiết
Nguyễn An
12 tháng 8 2021 lúc 8:43

a,ĐK: x\(\ge\)1

\(\sqrt{x-1-2\sqrt{x-1}+1}\)=\(\sqrt{2}\)

\(\sqrt{\left(\sqrt{x-1}-1\right)^2}\)=\(\sqrt{2}\)

\(\left|\sqrt{x-1}-1\right|\)=\(\sqrt{2}\)

TH1:\(\sqrt{x-1}\)-1≥0⇒\(\left|\sqrt{x-1}-1\right|\)=\(\sqrt{x-1}\)-1   bn tự giải ra nha

TH2:\(\sqrt{x-1}\)-1<0⇒\(\left|\sqrt{x-1}-1\right|\)=1-\(\sqrt{x-1}\)    bn tự lm nha

quỳnh chi
Xem chi tiết
Đình Trang
2 tháng 3 2016 lúc 20:13

a , nếu bạn chú ý bạn sẽ nhận ra đặc điểm của câu toán này 

Đình Trang
2 tháng 3 2016 lúc 20:27

( x+2)(x+5)(x+4)(x+3) = 24 

<=> (x+ 5x + 2x + 10)( x+ 3x+4x+12 ) = 24

<=> ( x2 +7x+10)(x2+7x+12) = 24 

Đặt x+ 7x = t 

Thay t vào phương trình , ta có 

 ( t + 10)(t+12) = 24

<=> t2 + 12t + 10t + 120 - 24 = 0

<=> t2 + 22t + 96 = 0 

<=> t2 + 6t + 16t + 96 = 0

<=> t( t+6)+16(t+6) = 0

<=> (t+16)(t+6) = 0 

=> t+ 16 = 0 => t= -16

hoặc t+6=0 => t= - 6

rồi từ đó giải phương trình x2+ 7x = -16 và phương trình x2+7x = -6 

x là tất cả các giá trị tìm được