Những câu hỏi liên quan
Princess Rose
Xem chi tiết
nguyen van huy
Xem chi tiết
hong doan
Xem chi tiết
oOo Sát thủ bóng đêm oOo
27 tháng 7 2018 lúc 14:26

tích mình đi

làm ơn

rùi mình

tích lại

thanks

Bình luận (0)
Tuan
27 tháng 7 2018 lúc 14:26

k mk đi 

Bình luận (0)
Phạm Tuấn Đạt
27 tháng 7 2018 lúc 14:35

Áp dụng BĐT bunhiacopxki ta có :\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)

.Dấu "=" xảy ra khi   :\(\frac{a}{\frac{1}{a}}=\frac{b}{\frac{1}{b}}=\frac{c}{\frac{1}{c}}\Leftrightarrow a^2=b^2=c^2\Leftrightarrow a=b=c\)

Mà \(a+b+c\le\frac{3}{2}\)\(\Rightarrow M=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9:\frac{3}{2}=9.\frac{2}{3}=6\)

Vậy Min M = 6 <=> a = b = c

Bình luận (0)
Hiếu Lê
Xem chi tiết
HD Film
13 tháng 8 2020 lúc 23:53

+)\(\frac{3}{4}\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow\frac{1}{8}\ge abc\)

+) \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(32abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-24abc\)

\(\ge4\sqrt[4]{\frac{32}{abc}}-24abc\ge4\sqrt[4]{\frac{32}{\frac{1}{8}}}-3=16-3=13\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Rose Princess
Xem chi tiết
No ri do
Xem chi tiết
Lightning Farron
30 tháng 1 2017 lúc 22:27

\(GT\Rightarrow\)\(\frac{1}{a+2}+\frac{3}{b+4}\leq1-\frac{2}{c+3}\)

Áp dụng BĐT AM-GM ta có:

\(1-\frac{2}{c+3}\geq\frac{1}{a+2}+\frac{3}{b+4}\geq2\sqrt{\frac{3}{(a+2)(b+4)}}\)

Tương tự ta có:

\(1-\frac{1}{a+2}\geq\frac{3}{b+4}+\frac{2}{c+3}\geq2\sqrt{\frac{6}{(c+3)(b+4)}}\)

\(1-\frac{3}{b+4}\geq\frac{1}{a+2}+\frac{2}{c+3}\geq2\sqrt{\frac{6}{(c+3)(a+2)}}\)

Nhân theo vế ta được: \((1-\frac{2}{c+3})(1-\frac{1}{a+2})(1-\frac{3}{b+4})\geq \frac{48}{(a+2)(b+4)(c+3)}\)

\(\Leftrightarrow (\frac{c+1}{c+3})(\frac{a+1}{a+2})(\frac{b+1}{b+4})\geq\frac{48}{(a+2)(b+4)(c+3)}\)

\(\Leftrightarrow(a+1)(b+1)(c+1)\geq48\)

Dấu "=" xảy ra khi \(a=1;c=3;b=5\)

Bình luận (0)
Lightning Farron
30 tháng 1 2017 lúc 22:48

\(Gt\Leftrightarrow 1-\frac{1}{a+2}+1-\frac{3}{b+4}+\frac{c+1}{c+3}\geq 2\\\Leftrightarrow \frac{a+1}{a+2}+\frac{b+1}{b+4}+\frac{c+1}{c+3}\geq 2\)

Đặt \((a+1;b+1;c+1)\rightarrow (x;y;z)\), vậy cần tìm GTNN của \(Q=xyz\)

Ta có: \(\frac{x}{x+1}+\frac{y}{y+3}+\frac{z}{z+2}\geq 2\)

Áp dụng BĐT AM-GM ta có:

\(\frac{x}{x+1}\geq 1-\frac{y}{y+3}+1-\frac{z}{z+2}=\frac{3}{y+3}+\frac{2}{z+2}\geq 2\sqrt{\frac{6}{(y+3)(z+2)}}\)

\(\frac{y}{y+3}\geq 1-\frac{x}{x+1}+1-\frac{z}{z+2}=\frac{1}{x+1}+\frac{2}{z+2}\geq 2\sqrt{\frac{2}{(x+1)(z+2)}}\)

\(\frac{z}{z+2}\geq 1-\frac{x}{x+1}+1-\frac{y}{y+3}= \frac{1}{x+1}+\frac{3}{y+3}\geq 2\sqrt{\frac{3}{(x+1)(y+3)}}\)

Nhân theo vế ta có:\(\frac{xyz}{\left(x+1\right)\left(y+3\right)\left(z+2\right)}\ge\frac{48}{\left(x+1\right)\left(y+3\right)\left(z+2\right)}\Leftrightarrow Q\ge48\)

Dấu "=" xảy ra khi \(\Leftrightarrow \left\{\begin{matrix} \frac{1}{x+1}=\frac{3}{y+3}=\frac{2}{z+2} & & \\ \frac{1}{a+2}+\frac{3}{b+4}=\frac{c+1}{c+3} & & \end{matrix}\right.\)\(\Leftrightarrow a=1;b=5;c=3\)

Bình luận (1)
Lightning Farron
30 tháng 1 2017 lúc 22:28

mk còn hơi nhiều cách giải cần tham khảo thì pm

Bình luận (1)
o0o I am a studious pers...
Xem chi tiết
Lầy Văn Lội
9 tháng 5 2017 lúc 0:24

để biểu thức cho đơn giản , ta đặt x=a+1,y=b+1,z=c+1(x,y,z>0)

thì giả thiết thành \(\frac{1}{x+1}+\frac{3}{y+3}\le\frac{z}{z+2}\) .Tìm min xyz 

Áp dụng bất đẳng thức cauchy:\(\frac{z}{z+2}\ge\frac{1}{x+1}+\frac{3}{y+3}\ge2\sqrt{\frac{3}{\left(x+1\right)\left(y+3\right)}}\)(1)

từ giả thiết :\(\frac{1}{x+1}\le\frac{z}{z+2}-\frac{3}{y+3}\Leftrightarrow1-\frac{1}{x+1}\ge1-\frac{z}{z+2}+\frac{3}{y+3}\)

\(\Leftrightarrow\frac{x}{x+1}\ge\frac{2}{z+2}+\frac{3}{y+3}\)

Áp dụng bất đẳng thức cauchy 1 lần nữa: \(\frac{x}{x+1}\ge\frac{2}{z+2}+\frac{3}{y+3}\ge2\sqrt{\frac{6}{\left(z+2\right)\left(y+3\right)}}\)(2)

tương tự ta cũng có: \(\frac{y}{y+3}\ge2\sqrt{\frac{2}{\left(z+2\right)\left(x+1\right)}}\)(3),

cả 2 vế các bất đẳng thức (1),(2)và (3) đều dương, nhân vế với vế: 

\(\frac{xyz}{\left(x+1\right)\left(y+3\right)\left(z+2\right)}\ge\frac{8.6}{\left(x+1\right)\left(z+2\right)\left(y+3\right)}\)

\(\Leftrightarrow xyz\ge48\)

Dấu = xảy ra khi x=2,y=6,z=4 hay a=1,b=5,z=3

Bình luận (0)
Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
25 tháng 10 2020 lúc 15:46

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
26 tháng 10 2020 lúc 11:44

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

Bình luận (0)
 Khách vãng lai đã xóa
Hà Gia Khang
25 tháng 4 2023 lúc 9:30

3. Áp dụng cô si ta có 

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c=1\)

Lại có:

 \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2=1\)

⇒ P ≥ \(2020.1+1=2021\)

Vậy Pmin = 2021 khi và chỉ khi a = b = c =1/3

Bình luận (0)
lethienduc
Xem chi tiết
Tran Le Khanh Linh
2 tháng 7 2020 lúc 21:14

Ta có \(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(1-2a+4a^2\right)}\le\frac{1+2a+1-2a+4a^2}{2}=1+2a^2\)(BĐT AM-GM)

Tương tự cho \(\sqrt{1+8b^2};\sqrt{1+8c^2}\)ta được \(P\ge\frac{1}{1+2a^2}+\frac{1}{1+2b^2}+\frac{1}{1+2c^2}\)

Mặt khác \(\frac{1}{1+2a^2}=\frac{1}{1+2a^2}+\frac{1+2a^2}{9}-\frac{1+2a^2}{9}\ge2\sqrt{\frac{1}{1+2a^2}\cdot\frac{1+2a^2}{9}}-\frac{2}{9}a^2-\frac{1}{9}=\frac{5-2a^2}{9}\)

Khi đó: \(P\ge\frac{5-2a^2}{9}-\frac{5-2b^2}{9}-\frac{5-2c^2}{9}\) \(=\frac{15-2\left(a^2+b^2+c^2\right)}{9}=\frac{15-2\cdot3}{9}=1\)

Vậy Min P=1

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=3\\1+2a=1-2a+4a^2\\\frac{1}{1+2a^2}=\frac{1+2a^2}{9}\end{cases}}\)và vai trò a,b,c như nhau hay (a,b,c)=(1,1,1)

Bình luận (0)
 Khách vãng lai đã xóa