cho 2015 số nguyên dương a1;a2;...;a2015 thỏa mãn điều kiện
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+\frac{1}{\sqrt{a_3}}+...+\frac{1}{\sqrt{a_{2015}}}\ge89\)
chứng minh rằng trong 2015 số nguyên dương đó luôn tồn tại ít nhất 2 sô bằng nhau
Cho dãy số gồm 2015 số nguyên dương đc sắp xếp như sau : a1, a2 ...a2015 . Chứng tỏ rằng luôn tìm được ở dãy số trên 1 số hoặc tổng của 1 số số chia hết cho 2015. ( a1 là số a thứ 1 nhé)
Ta có 15 = 1 + 2 + 3 + 4 + 5
Vì a1 là số nguyên dương nên \(a_1+a_2\ge3\)điều trên xảy ra khi \(a_1=1\)và \(a_2=a_1+1\)
Tương tự với \(a_1+a_2+a_3+a_4+a_5=a_1+\left(a_1+1\right)+...+\left(a_1+a_4\right)\)
\(=5a_1+10⋮15\)
Theo nguyên lý Dirichlet thì trong 2015 số nguyên dương sẽ tồn tại ít nhất 134 số chia hết cho 15 nếu \(a_1=15\)
Nếu các số nguyên dương trên có giá trị tương đương nhau thì \(a_1+a_2+...+a_{2015}=2015a_n\)
Vậy trong nguyên lý Dirichlet thì có thể tồn tại ít nhất 134 cặp số có tổng chia hết cho 15 với \(a_n\)nhỏ nhất là 1
Làm lại
Ta thấy rằng nếu tồn tại một số \(a_n\)nào đó chia hết cho 15 thì bài toán được chứng minh (hoặc\(b_i\left(i=1,2,3,...,15\right)\)
Ta lập tổng : \(S_1=a_1\)
\(S_2=a_1+a_2\)
...
\(S_{2015}=a_1+a_2+...+a_{2015}\)
Lấy 15 số hạng bất kỳ ta có : Nếu không tồn tại số bi(i=1,2,3,...,15) chia hết cho 15 thì đem tất cả các số b1 chia cho 15 sẽ được số dư từ 1-15 trong khi đó từ 1 tới 2015 có 2015 số,theo nguyên lý dirichlet tồn tại ít nhất hai số có cùng số dư => có hiệu chia hết cho 15
Cho dãy số gồm 2015 số nguyên dương đc sắp xếp như sau : a1;a2;a3;...;a2015 . chứng tỏ rằng luôn tìm đc ở dãy số trên có một số hoặc tổng 1 số số chia hết cho 2015.
a1 tưc là số a thứ 1 nhé ,
Hình như bài này sử dụng định lí Đi rich lê.
Cho số nguyên dương a1,a2,a3,...,a2015 tm điều kiện"
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+\frac{1}{\sqrt{a_3}}+...+\frac{1}{\sqrt{a_{2015}}}\ge89\)
CMR trong 2015 số nguyên dương đó , luôn tồn tại ít nhất 2 số bằng nhau.
trong sách nâng cao và phất triển 1 số chuyên đề toàn 9 tập 1 có đó
p giải giúp mik đk k .. mik k có sách đấy
giải trên đây thì lâu lắm,,,bạn cố mượn ai đó sách cho nhanh bạn ạ
1) Tồn tại hay không số nguyên x thỏa mãn 202x + 122x + 20152x là một số chính phương.
2) Cho n là một số nguyên dương và n số nguyên dương a1 , a2 , a3 , …, an có tổng bằng 2n - 1. Chứng minh rằng tồn tại một số số trong n số đã cho có tổng bằng n.
20^2x có tận cùng là 0
12^2x=144^x;2012^2x=4048144^x
xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4
4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4
suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)
xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6
4948144^2k=(...6)^k có tận cùng là 6
suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)
từ(1) và (2) suy ra không tồn tại số x
Đinh Tuấn việt chép mạng thề luôn!
nếu x = 2k thì 2015^2x = 4060225^x chứ không phải là 4048144^x nha
Nếu mún bt hãy xem dòng thứ 2 của lời giải của bạn ấy có ghi là
2012^2x = 4048144^x
Nhưng đề bài lại nói là 2015^2x cơ mà ??
cho các số nguyên a1 ; a2 ; a3 ; .... ; a2015 thỏa mãn a1 + a2 + a3 +...+ a 2015 = 0 và a1 + a2 = a3 + a4 = a2015 + a1 =1
tính a1 ; a2015
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
Cho 2015 số nguyên a1, a2,..., a2015. b1,b2,...,b2015 là cách sắp xếp theo thứ tự khác của các số a1, a2,..., a2015.
CMR: P = (a1-b1).(a2-b2)...(a2015-b2015) là 1 số nguyên chẵn
Cho các số nguyên dương : a1;a2;a3;....a2015 sao cho :
N = a1 + a2 + a3 +.....+ a2015 chia hết cho 30
Chứng minh : M= a15 + a25 + a35 + ..... + a20155 chia hết cho 30
cho 2015 số nguyên bất kì dương nhỏ hơn 2015.Tổng của 2015 số ấy là 4030,chứng minh rằng trong 2015 số nguyên dương ấy ta luôn chọn được 2 số mà tổng của chúng chia hết cho 2015
1 ,lik e nhé lik e rồi tớ hướng dẫn cách giải đó
Bài 1. Cho số nguyên dương N, dãy các số nguyên dương a1, a2, a3,…,aN và một số nguyên dương x. Trình bày thuật toán kiểm tra xem số x có trong dãy hay không? (có thể trình bày thuật toán dưới dạng liệt kê hoặc sơ đồ khối).
Giả sử có dãy số: a1, a2, a3, a4. Trong đó:
- a1: là ngày sinh của học sinh.
- a2: là tháng sinh của học sinh.
- a3: là năm sinh của học sinh.
- a4: là số 2021.
- x: là số 15.
Hãy trình bày các bước để kiểm tra x có trong dãy a1, a2, a3, a4 hay không?
Ví dụ: học sinh sinh ngày 18/05/2005 thì cần trình bày các bước để kiểm tra số 15 có trong dãy số 18, 5, 2005, 2021 hay không?
#include <bits/stdc++.h>
using namespace std;
long long a[4],n,x;
int main()
{
cin>>n>>x;
for (i=1; i<=n; i++) cin>>a[i];
for (i=1; i<=n; i++)
if (a[i]==x)
{
cout<<"YES";
break;
}
cout<<"NO";
return 0;
}