Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phan tuấn anh

cho 2015 số nguyên dương a1;a2;...;a2015 thỏa mãn điều kiện 

 \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+\frac{1}{\sqrt{a_3}}+...+\frac{1}{\sqrt{a_{2015}}}\ge89\)

chứng minh rằng trong 2015 số nguyên dương đó luôn tồn tại ít nhất 2 sô bằng nhau 

Nguyễn Tuấn Anh
28 tháng 4 2016 lúc 10:00

Vì \(a_1,a_2,....,a_{2015}\)là các số nguyên dương, để không mất tính tổng quát ta giả sử \(a_1\le a_2\le a_3\le.....\le a_{2015}\)Suy ra
\(a_1\ge1,a_2\ge2,.......,a_{2015}\ge2015\) Vậy ta có \(A=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+..........+\frac{1}{\sqrt{a_{2015}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{2015}}=B\)

\(B=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2015}}<1+\frac{2}{\sqrt{2}+\sqrt{1}}+\frac{2}{\sqrt{3}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2014}}=C\)

Ta có trục căn thức ở mẫu của \(C\)Ta có: \(C=2\left(\sqrt{2015}-\sqrt{2014}+\sqrt{2014}-\sqrt{2013}+.....+\sqrt{2}-\sqrt{1}\right)+1=2\left(\sqrt{2015}-\sqrt{1}\right)+1\)

Mà: \(C=2\left(\sqrt{2015}-\sqrt{1}\right)+1<89\)Trái với giả thiết Vậy tồn tại ít nhất 2 số bằng nhau trong 2015 số nguyên dương đó

Thân Gia Bảo
28 tháng 4 2016 lúc 10:37

http://olm.vn/thanhvien/phantuananhlop9a1

ko cần pít
28 tháng 4 2016 lúc 14:22

Trời khó dã man con ngan! ai đồng tình cho mk xin 1 k nha!


Các câu hỏi tương tự
Bùi nguyễn Hoài Anh
Xem chi tiết
Hà Cẩm Tú
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
Ghost Rider
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết
Dung Đặng Phương
Xem chi tiết
Lê Song Phương
Xem chi tiết
Diệp Nguyễn Thị Huyền
Xem chi tiết
Trần Hữu Sang
Xem chi tiết