Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Dũng An
Xem chi tiết
Lê Thị Yến Nhi
Xem chi tiết
Angry Birds
Xem chi tiết
Hop Duy
Xem chi tiết
Cường
Xem chi tiết
Nguyễn Hoài Thương
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2021 lúc 15:34

Đường CN có pt là x-3y=0 hay x-y=0 vậy bạn?

Trần MInh Hiển
Xem chi tiết
Nguyễn Hữu Hải
5 tháng 5 2023 lúc 0:57

Để giải bài toán này, ta cần sử dụng các kiến thức về hình học phẳng và đường thẳng.

Trước tiên, ta xác định tọa độ của điểm A. Vì AB là đường chéo của hình vuông nên ta có thể sử dụng định lí Pythagoras trong tam giác vuông ABD để tính độ dài cạnh của hình vuông, rồi suy ra tọa độ của điểm A.

Với AB: x-y+4=0, ta có hai điểm A thỏa mãn điều kiện này: A(x,y)=(y-4,y) và A'(x',y')=(x'+4,x'). Vì độ dài cạnh của hình vuông là xác định nên ta chỉ cần tìm được một điểm trên cạnh AB, chẳng hạn A, để suy ra tọa độ của các điểm còn lại.

Giả sử ta chọn A(y-4,y), ta có

Tọa độ của B là (y, y-4) (vì AB là đường chéo)Tọa độ của C là (y-4, -y) (vì ABCD là hình vuông)Tọa độ của D là (-y, y-4) (vì ABCD là hình vuông)

Ta dễ dàng tính được tọa độ của M và N:

Tọa độ của M là ((y+y-4)/2, (y-4)/2) = (y-2, -2)Tọa độ của N là (x, 2x+6) với điểm N thuộc đường thẳng d: x-2y-6=0 và N có hoành độ dương. Thay x-2y-6=0 vào ta có x=2y+6, suy ra tọa độ của N là (2y+6, 2x+6) = (2y+6, 4y+18)

Tiếp theo, ta tính khoảng cách d giữa đường thẳng AB và điểm H. Theo công thức, ta có d(H, AB) = |Ax + By + C| / sqrt(A^2 + B^2), với (A, B, C) là vector pháp tuyến của đường thẳng AB.

Vì AB: x-y+4=0 nên vector pháp tuyến của AB là (1, -1). Điểm H là giao điểm của hai đường thẳng AM và BN nên ta dễ dàng tính được tọa độ của H là ((y-2)/2, (y-4)/2). Thay vào công thức tính khoảng cách ta có d(H, AB) = |y-2 + 2y-4 + 4| / sqrt(1+1) = 8sqrt(2)/2 = 4sqrt(2).

Vậy, tọa độ các đỉnh của hình vuông là:

A(y-4, y)B(y, y-4)C(y-4, -y)D(-y, y-4)

Và tọa độ của M và N là:

M(y-2, -2)N(2y+6, 4y+18) với y > 0

Khoảng cách giữa đường thẳng AB và điểm H là 4sqrt(2).

võ dương thu hà
Xem chi tiết
Trương Quang Thiện
Xem chi tiết
Kiệt Nguyễn
21 tháng 2 2019 lúc 13:25

a. Dễ thấy \(AEMF\)là hình chữ nhật \(\Rightarrow\) \(AE=FM\)
Dễ thấy \(\Delta DFM\) vuông cân tại F \(\Rightarrow FM=DF\)
\(\Rightarrow AE=DF\) \(\Rightarrow\)tam giác vuông ADE bằng tam giác vuông DCF ( \(AE=DF;AD=DC\) \(\Rightarrow\) \(DE=CF\)
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC) 
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2) 
Gọi H là giao điểm của BF và DE 
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF 
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H 
c) Dễ thấy AE + EM = AE + EB = AB = không đổi 
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F) 
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD

Cô Hoàng Huyền
24 tháng 2 2018 lúc 9:35

Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

tư lê
5 tháng 5 2018 lúc 20:21

k bt mần ko bt mần ok