Chứng minh 2n+1/3n+1 là phân số tối giản
Chứng minh rằng: phân số 3n-1/2n-1 là 1 phân số tối giản
chứng minh 3n-1/2n-1 là phân số tối giản
Bạn Ơi sao giống tên tui vậy cả hình cũng giống nữa
Gọi d là ƯC ( 3n - 1 ; 2n - 1 )
⇒ 3n - 1 ⋮ d và 2n - 1 ⋮ d ⇒ 2.( 3n - 1 ) ⋮ d và 3.( 2n - 1 ) ⋮ d
⇒ [ 2.( 3n - 1 ) - 3.( 2n - 1 ) ] ⋮ d ⇒ [ ( 6n - 2 ) - ( 6n - 3 ) ] ⋮ d
⇒ 1 ⋮ d . Do đó : d = 1
Vì ƯC ( 3n - 1 ; 2n - 1 ) = 1 nên 3n - 1 ; 2n - 1 là nguyên tố cùng nhau
Vậy phân số 3n - 1 / 2n - 1 tối giản
chứng minh rằng 2n+1/3n+2 là phân số tối giản
Gọi UWCLN(2n + 1; 3n + 2) = d
Ta có :
2n + 1 chia hết cho d => 3(2n + 1) = 6n + 3 chia hết cho d
3n + 2 chia hết cho d => 2(3n + 2) = 6n + 4 chia hết cho d
Áp dụng công thức đồng dư, ta có :
6n + 4 - 6n - 3 = 1
=> \(\frac{2n+1}{3n+2}\) là phân số tối giản vì có ước chung là 1
Chứng minh P là phân số tối giản: P = (2n3 +3n2 -n-1) / (2n3 +3n2 +3n +1)
\(P=\frac{\left(2n^3+n^2\right)+\left(2n^2+n\right)-\left(2n+1\right)}{\left(2n^3+n^2\right)+\left(2n^2+n\right)+\left(2n+1\right)}\)
\(P=\frac{n^2\left(2n+1\right)+n\left(2n+1\right)-\left(2n+1\right)}{n^2\left(2n+1\right)+n\left(2n+1\right)+\left(2n+1\right)}\)
\(P=\frac{n^2\left(2n+1\right)+n\left(2n+1\right)-\left(2n+1\right)}{n^2\left(2n+1\right)+n\left(2n+1\right)+\left(2n+1\right)}\)
P không là tối giản vì cả tử và mẫu đều chia hết cho (2n +1)
Phân số P chắc chắn không tối giản vì tử và mẫu chia hết cho 2n - 1, còn phân số sau khi rút gọn mới là tối giản.
\(P=\frac{n^2+n-1}{n^2+n+1}\)
Gọi d là ước chung lớn nhất của tử và mẫu
\(\hept{\begin{cases}n^2+n+1⋮d\\n^2+n-1⋮d\end{cases}}\)
suy ra \(n^2+n+1-\left(n^2+n-1\right)⋮d\)hay \(2⋮d\)
Lại có \(n^2+n+1=n\left(n+1\right)+1\)là số lẻ nên d là số lẻ.
Hai điều trên suy ra d = 1.
Do đó P là phân số tối giản.
Chứng minh rằng với mọi giá trị nguyên của
n thì phân số 2n+1/3n+2 là phân số tối giản
Gọi d=UCLN(2n+1;3n+2)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+2\right)⋮d\)
\(\Leftrightarrow-1⋮d\)
=>d=1
=>UCLN(2n+1;3n+2)=1
=>2n+1/3n+2 là phân số tối giản
Chứng minh rằng các phân số 2n+1/3n+2;4n+1/6n+1 là phân số tối giản với mọi số tự nhiên n
\(\frac{2n+1}{3n+2}\)
Gọi \(d\inƯC\left(2n+1;3n+2\right)\)
Ta có : \(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Leftrightarrow6n+4-6n+3⋮d\)
\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)
\(\frac{4n+1}{6n+1}\)
Gọi \(d\inƯC\left(4n+1;6n+1\right)\)
Ta có :
\(3\left(4n+1\right)-2\left(6n+1\right)⋮d\)
\(\Leftrightarrow12n+3-12n+2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=\pm1\)
Chứng minh phân số \(\dfrac{2n+7}{3n+10}\)là phân số tối giản
Chứng minh 2n/3n cộng 1 là phân số tối giản
Note: giúp mình với
ta có 2n/3n = 2/3
mà 2/3 + 1 = 5/3
5/3 là 1 phân số tối giản
chứng minh 3n+7/2n+5 là phân số tối giản
Gọi d=ƯCLN(3n+7;2n+5)
=>6n+14-6n-15 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG