Gọi d là ƯCLN(2n+1;3n+1)
\(\Rightarrow2n+1\) chia hết cho d
\(\Rightarrow3n+1\) chia hết cho d
\(\Rightarrow\left(2n+1\right)-\left(3n+1\right)\) chia hết cho d
\(\Rightarrow\left[3\left(2n+1\right)\right]-\left[2\left(3n+1\right)\right]\) chũng chia hết cho d
\(=\left[6n+3\right]-\left[6n+2\right]\)
\(=6n+3-6n-2\)
\(=\left(6n-6n\right)+\left(3-2\right)\)
\(=0+1=1\) chia hết cho d
Vậy 1 chia hết cho d nên => d chia hết cho 1;-1
=> ƯCLN(2n+1;3n+1)=1 (1)
từ \(\left(1\right)\Rightarrow\frac{2n+1}{3n+1}\) là phân số tối giản