CMR: A=1+1/2^2+1/3^2+1/4^2+...+1/50^2>2
cho A = 1/3 mũ 2 + 1/4 mũ 2 + 1/5 mũ 2 + ...+ 1/50 mũ 2 CMR : A > 1/4
giúp mình nhé
tích mình đi
ai tích mình
mình ko tích lại đâu
thanks
cho A = 1/3 mũ 2 + 1/4 mũ 2 + 1/5 mũ 2 + ...+ 1/50 mũ 2 CMR : A1/4
tích mình với
ai tích mình
mình tích lại
thanks
CMR \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{4}{9},A>\frac{1}{4}\)
cho A= 1/1^2+1/2^2+1/3^2+...+1/50^2.CMR A<2
Lời giải:
$A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}$
$< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}$
$=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}$
=2-\frac{1}{50}< 2$
(đpcm)
Bài 1 : Cho A = \(\frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\) . CMR : A < 2
Bài 2 : Cho B = \(2^1+2^2+2^3+2^4+...+2^{30}\). CMR : B chia hết cho 21
Bai 2 :
Ta co :
B = [ 2^1 + 2^2 + 2^3 + 2^4 + 2^5 = 2^6 ] + .... + [ 2^25 + 2^26 + 2^27 + 2^28 +2^29 +2^30 ]
= 2[1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ] +.....+ 2^25[ 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ]
= 2 . 63 +.... + 2^25 . 63
= 63 [2 + ..... + 2^25 ] chia het cho 21
Vay B chia het cho 21
Bai 1 :
Ta co :
A = 1/1 + 1/2^2 + 1/3^3 + 1/4^4 + .... + 1?50^2 < 1/1 + 1/1.2 + 1/2.3 + ..... + 1/49.50
=>1 + 1/1 - 1/2 +1/2 -1/3 + .... +1/449 - 1/50
=> 1 + 1/1 - 1/50
=> 1 + 49/50
=> 99/50 < 2
Vay 1 < 2
bai 1 minh ket luan nham
A < 2
bài 6:
cho : A= 1/12+1/22+1/32+1/42+...+1/502
CMR: A<2
A=1/1^2+1/2^2+1/3^2+........+1/50^2
1/1^2=1/2x2=1-1/2
1/3^2=1/3x3=1-1/3
....................................
1/50^2=1/50x50=1-1/50
=>A < 1/1^2+1-1/2+1/2-1/3+1/3-1/4+.............+1/49-1/50
=>A < 1+(1-1/50)<1+1=2
=> A<2
A=1/1^2+1/2^2+1/3^2+........+1/50^2
1/1^2=1/2x2=1-1/2
1/3^2=1/3x3=1-1/3
....................................
1/50^2=1/50x50=1-1/50
=>A < 1/1^2+1-1/2+1/2-1/3+1/3-1/4+.............+1/49-1/50
=>A < 1+(1-1/50)<1+1=2
=> A<2
A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\) CMR A < 2
AI ĐÚNG TK
Ta có : \(\frac{1}{1^2}=1\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
Vậy \(A< 2\)
Cho a = 1+1/2+1/3+1/4+.....+1/(2100-1)
CMR P > 50
CMR A<2
A=1/1^2+1/2^2+1/3^2+.....+1/50^2
1/22 < 1/2.3 ; 1/32 < 1/3.4 ; .....; 1/502 < 1/50.51 => A < 1+1-1/2+1/2-1/3+...1/50-1/51 < 2
tổng đài tư vấn có bằng chứng ko
ko có thì đừng nói