Tính P=(1+x/y)(1+y/z)(1+z/x) biết x+y+z=0 và x,y,z≠0
2. Tính P=(1+x/y)*(1+z/x)*(1+z/y). Biết x+y+z=0 và x,y,z #0
3. Tính Q= 5.y^10-y^15+2016. Biết (x+1)^2016+(y-1)^2018=0
2. Tính P=(1+x/y)*(1+z/x)*(1+z/y). Biết x+y+z=0 và x,y,z #0
3. Tính Q= 5.y^10-y^15+2016. Biết (x+1)^2016+(y-1)^2018=0
Tính giá trị biểu thức:
a) F= (1+x/z)*(1-y/z)*(1-z/y) tại x,y,z khác 0 và x+y-z=0
b) G= (x+y)*(y+1)*(x+1) biết x*y=2 và x+y+1=0
1. Cho đa thức f(x)=mx^2+7n. Biết 4m+7n=0. Chứng minh rằng: Đa thức f(x) có nghiệm
2. Tính P=(1+x/y)*(1+z/x)*(1+z/y). Biết x+y+z=0 và x,y,z #0
3. Tính Q= 5.y^10-y^15+2016. Biết (x+1)^2016+(y-1)^2018=0
1.4m+7n=0
=>4m=-7n
=>mx2-4m=0
=>m(x2-4)=0
=>m=0 hoặc x=2 hoặc x=-2
a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)
Thay x-y=7 vào biểu thức (1), ta được:
\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)
Vậy: Khi x-y=7 thì A=100
b) Ta có: \(x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy+10=4\)
\(\Leftrightarrow2xy=-6\)
\(\Leftrightarrow xy=-3\)
Ta có: \(A=x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)
Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:
\(A=2\cdot\left(10+3\right)=2\cdot13=26\)
Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26
\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)
\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)
cho x,y,z khác nhau và khác 0 và 1/x+1/y+1/z=0
tính giá trị biểu thức : A= y+z/x+z+x/y+x+y/z
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z};\frac{1}{x}+\frac{1}{z}=-\frac{1}{y};\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)
\(A=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\)
\(=\left(\frac{y}{x}+\frac{y}{z}\right)+\left(\frac{x}{y}+\frac{x}{z}\right)+\left(\frac{z}{x}+\frac{z}{y}\right)=y\left(\frac{1}{x}+\frac{1}{z}\right)+x\left(\frac{1}{y}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=y\cdot-\frac{1}{y}+x\cdot-\frac{1}{x}+z\cdot-\frac{1}{z}=-1-1-1=-3\)
vậy A=-3
Cho x,y,z khác 0 và x-y-z=0
Tính B=(1-z/x) (1-x/y) (1+y/z)
Cho x,y,z khác 0 và x - y - z = 0.
Tính: B = ( 1 - z/x ).( 1 - x/y ).( 1 + y/z )
Cho x,y,z khác 0 và 1/x+1/y+1/z=0. Tính giá trị của biểu thức Q= x+y/z + y+x/x + z+x/y