tìm n lẻ sao cho 3n2+6n+13 là số chính phương
Cho số tự nhiên An= 3n^2+6n+13(n thuộc N) tìm các số tự nhiên n lẻ sao cho An là số chính phương
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
Tmf số n lẻ sao cho 3n2 + 6n +13 là số chính phương
Cho số tự nhiên \(a_n=3n^2+6n+13\) với \(n\in N\) . Tìm các số tự nhiên n lẻ sao cho \(a_n\) là số chính phương
Tìm số nguyên dương n sao cho n4+4n3-3n2-n+3 là số chính phương .
a/ cho n là số tự nhiên lẻ tìm n để \(a=3n^2+6n+13\) là số chính phương
b/cho a,b,c >0 và a+b+c=1
timg GTNN của biểu thức \(A=a^3+b^3+c^3\)
Với mỗi số tự nhiên n, đặt \(a_n=3n^2+6n+13\)
a) Chứng minh rằng nếu hai số a1;a2 không chia hết cho 5 và có số dư khác nhau khi chia cho 5 thì a1+a2 chia hết cho 5
b) Tìm tất cả các số tự nhiên n lẻ sao cho an là số chính phương
tìm n nguyên dương sao cho n+1 , 6n+1 và 20n+1 là số chính phương.
tìm số nguyên dương n nhỏ nhất sao cho các số n + 1 ; 6n +1 ;20n + 1 đều là các số chính phương . mn giúp mik vs
Bài 4: Với mỗi số tự nhiên n, đặt an = 3n2 + 6n + 13.
a)Chứng minh rằng nếu hai số ai; aj không chia hết cho 5, có số dư khác nhau khi chi cho 5 thì ai + aj chia hết cho 5.
b)Tìm tất cả các số tự nhiên lẻ n sao cho an là số chính phương.
Nhờ @Vũ Minh Tuấn giúp mình với
Mình chưa học đến lớp 9 nhưng ở đây có nhé bạn: Câu hỏi của hà mai trang.
Chúc bạn học tốt!