tim nghiem nguyen duong: \(3^x=y^2+2y\)
Giai phuong trinh nghiem nguyen
a)x2-4xy=23
tim x,y nguyen duong thoa man
4xy-3(x+y)=59
a.
\(x^2-4xy=23\)
\(\Leftrightarrow x\left(x-4y\right)=23\)
Ta co:
\(23=1.23=23.1=\left(-1\right).\left(-23\right)=\left(-23\right).\left(-1\right)\)
TH1:
\(\left\{{}\begin{matrix}x=1\\x-4y=23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\frac{11}{2}\end{matrix}\right.\)(loai)
TH2:
\(\left\{{}\begin{matrix}x=23\\x-4y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=23\\y=\frac{11}{2}\end{matrix}\right.\)(loai)
TH3:
\(\left\{{}\begin{matrix}x=-1\\x-4y=-23\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\frac{11}{2}\end{matrix}\right.\)(loai)
TH4:
\(\left\{{}\begin{matrix}x=-23\\x-4y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-23\\y=-\frac{11}{2}\end{matrix}\right.\)(loai)
Vay khong co ngiem nguyen nao thoa man phuong trinh
tim nghiem nguyen cua phuong trinh
x^3-y^3-2y^2-3y-1=0
\(x^3-y^3-2y^2-3y-1=0\)
\(<=>x^3=y^3+2y^2+3y+1\)≤\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)
Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)
Từ (1) và (2)
\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)
\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)
Xong giải ra thôi
Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời
tim nghiem nguyen duong cua phuong trinh x+y+z=xyz
tim nghiem nguyen duong cua pt yx^2+yx+y=1
Tim nghiem nguyen duong cua pt:\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}=3\)
ap dung bdt co si ta co:\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}>=3\sqrt[3]{xyz}\)
=>\(3>=3\sqrt[3]{xyz}\)
=>\(1>=\sqrt[3]{xyz}\)
=>\(1>=xyz\)
dau bang xay ra khi \(\frac{xy}{z}=\frac{yz}{x}=\frac{xz}{y}\)=>x=y=z=1
vay x=y=z=1
Tim nghiem nguyen cua pt \(x^2+y^2+xy=x^2y^2\)
Có nhiều cách để làm bài này nhé!
Áp dụng bất đẳng thức $x^2+y^2\geq 2xy$ nên ta có $x^2+y^2+xy \geq 3xy$
Mà $x^2+y^2+xy=x^2y^2 \geq 0$ nên suy ra $x^2y^2+3xy\leq 0 \iff -3\leq xy \leq 0$
Vì $x,y$ nguyên nên $xy$ nguyên, vậy nên $xy \in \left \{ -3,-2,-1,0\right \}$
Trường hợp $xy=-3 $ ta tìm được các nghiệm $(-1,3),(3,-1),(-3,1),(1,-3)$
Trường hợp $xy=-2$ ta tìm được các nghiệm $(-1,2),(2,-1),(1,-2),(-2,1)$
Trường hợp $xy=-1$ ta tìm được các nghiệm $(-1,1),(1,-1)$
Trường hợp $xy=0$ ta tìm được nghiệm $(0,0)$
Thử lại thì thấy chỉ có các nghiệm $(0,0),(1,-1),(-1,1)$ thỏa mãn và đó là các nghiệm nguyên cần tìm
PT ban đầu tương đương
$x^2(y^2-1)-yx-y^2=0$
Xét $\Delta = 4y^4-3y^2$
=> $\sqrt{\Delta} = y\sqrt{4y^2-3}$
Nếu y=0 thì x=0
Xét TH y khác 0
Pt nhận nghiệm nguyên nên $sqrt{\Delta}$ nguyên
mà y nguyên rồi nên $4y^2-3$ phải là số chính phương
Đặt $4y^2-3=k^2$
Tới đây suy ra được y=1 hoặc y=-1
Thay vào pt ban đầu tìm được x tương ứng.
Vậy pt có 3 nghiệm (x;y)=(0;0);(-1;1);(1;-1)
x^2+xy+y^2=x^2y^2
<> (1 - y^2).x^2 + xy + y^2 = 0
+ nếu 1 - y^2 = 0 <> y = +-1 thay vào => x => nghiệm (1,-1) và (-1,1)
+ nếu 1 - y^2 # 0 xem như pt bậc 2 ẩn x ta có
denta = y^2 - 4y^2.(1 - y^2) = y^2.(1 - 4 + 4y^2) = (4.y^2 - 3).y^2
- nếu y = 0 => x = 0
- nếu y # 0 ta có 4y^2 - 3 phải là số chính phương
<> 4y^2 - 3 = n^2
<> 4y^2 - n^2 = 3
<> (2y - n)(2y + n) =3
=> ta có các hệ sau
+ 2y - n = 3 và 2y + n =1
<> y = 1 và n =1 loại
+ 2y - n =1 và 2y + n = 3
<> y = n =1 loại
+ 2y - n = -3 và 2y + n = -1
<> y = -1 và n = 1 loại
+ 2y - n = -1 và 2y + n = -3
tương tự loại
Vậy có 3 nghiệm (0,0) (-1,1) và (1,-1)
tim nghiem nguyen duong cua phuong trinh \(x^2+\left(x+y\right)^2=\left(x+9\right)^2\)
Tuy đã 5 năm rồi nhưng tôi vẵn làm vậy :)
cái này phải vận dụng cái giả thiết cho là nghiệm nguyên dương
\( x^2+(x+y)^2=(x+9)^2\)
\(<=>x^2+x^2+2xy+y^2=x^2+18x+81\)
\(<=>(x+y)^2=18x+81\)
Ta có:\((x+y)^2-x^2=(x+y-x)(x+y+x)=y(2x+y)>0\)
\(=>(x+y)^2>x^2\)
\(=>18x+81>x^2\)
\(=>x^2+18x+81>2x^2>x^2\) (1)
Lại có:\(18x+81=(x^2+18x+81)-x^2=(x+9)^2-x^2<(x+9)^2\)(2)
Từ (1) và (2)
\(=>x^2<18x+81=(x+y)^2<(x+9)^2\)
\(=>18x+81=(x+1)^2,(x+2)^2,...,(x+8)^2\)
Chịu khó giải ra nha bn
tim nghiem nguyen cua pt
\(x^2+xy+y^2=x^2y^2\)
tim nghiem nguyen duong cua phuong trinh xy^2+2xy+x = 32y