Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Thị Thu Mai
Xem chi tiết
Trần Thị Thùy Linh
Xem chi tiết
Singer_Lovely
28 tháng 3 2016 lúc 12:28

tốn giấy quá

dinhkhachoang
28 tháng 3 2016 lúc 12:29

GỌI Đ LÀ ƯC CỦA N+13 VÀ N-2

=>N+13 CHIA HẾT CHO Đ

=>N-2 CHIA HẾT CHO Đ

=>.............................

TÌM HIỂU NHÉ 

MUỐN GIẢI HẾT =>K

OK

Văn Đức Kiên
Xem chi tiết
Nguyễn Tuấn Minh
2 tháng 4 2017 lúc 17:48

Giả sử d là ước nguyên tố của n+13 và n-2

Ta có \(n+13⋮d\)

        \(n-2⋮d\)

=> \(\left(n+13\right)-\left(n-2\right)⋮d\)

=> \(15⋮d\)

=> \(d\in\){3;5}, vì d nguyên tố, ta chỉ cần xét 1 trường hợp là đủ

Để phân số đã cho tối giản thì \(n+13\) không chia hết cho 3

=> n+13\(\ne3k\left(k\in Z\right)\)

=>\(n\ne3k-13\)

Vây với \(n\ne3k-13\left(k\in Z\right)\) thì phân số đã cho tối giản

Văn Đức Kiên
2 tháng 4 2017 lúc 18:40

cach kho hieu qua ban oi con cach khac ko

Lê Thanh Tân
4 tháng 4 2017 lúc 21:09

mình mới lớp 5 nên mình ko hiểu, chỉ mình được không

Dương Helena
Xem chi tiết
Vũ Phương Đông
13 tháng 5 2016 lúc 16:26

câu hỏi tương tự có đấy:

Đào Công Lý
Xem chi tiết
Lưu Minh Trí
1 tháng 4 2018 lúc 21:31

De \(\frac{n+13}{n-2}\)la phan so toi gian thi n + 13 chia het n - 2

Gia su n + 13 chia het n - 2 ta co:

      n + 13 \(⋮\)n - 2 

=>  ( n + 13  - ( n -2 ) \(⋮\)n - 2

=> 15 \(⋮\)n - 2

=> n - 2\(\in\)Ư(15)

=> n - 2\(\in\)( 1 ; 3 ; 5 ; 15 )

Vay n \(\in\)( 3 ; 5 ; 7 ; 17 )

Nguyễn Chí Thanh
1 tháng 4 2018 lúc 21:39
\(\frac{n+13}{n-2}\)=\(\frac{\left(n-2\right)+15}{n-2}=\)\(1+\frac{15}{n-2}\)\(\Rightarrow\)n-2thuộcƯ(15)=(-15;-5-;-3;-1;1;3;5;15)
n-2-15-5-3-1+1+3+5+15
n-13-3-1135717

Vậy \(\frac{n+13}{n-2}\)là phân số tối giản

Cô nàng cá tính
Xem chi tiết
Trịnh Thành Công
13 tháng 5 2016 lúc 12:55

Đặt \(A=\frac{n+13}{n-2}\) là phân số tối giản

\(\Rightarrow\)n+13 chia hết cho n-2(n là số tự nhiên)

Ta có:

\(\frac{n+13}{n-2}=\frac{n-2+15}{n-2}=\frac{n-2}{n-2}+\frac{15}{n-2}=1+\frac{15}{n-2}\)

Do đó n-2\(\in\)Ư(15)

Vậy Ư(15)là[1,3,5,15]

        Ta có bảng sau:

n-213515
n35717

Vậy n=3;5;7;17

Bùi Hà Chi
13 tháng 5 2016 lúc 16:02

Trịnh Thành Công giải sai rồi

Nguyễn Vũ Phượng Thảo
13 tháng 5 2016 lúc 18:39

Để \(\frac{n+13}{n-2}\)là phân số tối giản thì n+13 không chia hết cho n-2

n+13=n-2+15

Mà n-2 chia hết cho n-2; vậy 15 không chia hết cho n-2 và ƯCLN(n-2;15)=1

vậy n-2 khác 3k                        n-2 khác 5k

n khác 3k+2                              n khác 5k+2

Vậy n khác 3k+2; 5k +2

Bùi Hồng Sang
Xem chi tiết
Diệu Anh
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Khách vãng lai đã xóa
Tanki Online
Xem chi tiết
Nguyễn Đình Tuấn Hưng
1 tháng 4 2017 lúc 21:04

Kho qua thoi mik ko nghi ra

Cau cu k cho mik bao gio to hoi ban OK

Asuka Kurashina
1 tháng 4 2017 lúc 21:06

Để n-19 / n-2 là phân số tối giản thì

Suy ra : ƯCLN ( n-19 ; n-2 ) = d

=> n - 19 chia hết cho d

=> n - 2  chia hết cho d

=> n - 19 - n - 2 chia hết cho d

=> n - n - 17 chia hết cho d

=> 0 - 17 chia hết cho d

=> -17 chia hết cho d

=> d thuộc { -1;1;-17;17 }

=> n-19 / n-2 là phân số tối giản

Le Giang
Xem chi tiết
Hoàng Anh Tuấn
20 tháng 8 2015 lúc 20:17

gọi d là ước nguyên tố chung của n + 3 và n - 12

ta có : n + 3 : hết cho d ; n - 12 : hết cho d

=> ( n + 3) - ( n - 12) : hết cho d

=> 15 : hết cho d

=> d \(\varepsilon\){ 3 ; 5 }

nếu d = 3 

=> n + 3 : hết cho 3

=> n : hết cho 3

=> n \(\ne\) 3k

nếu d = 5

=> n - 12 : hết cho 5

=> n - 10 - 2 : hết cho 5

=> n - 2 : hết cho 5

=> n \(\ne\)5k + 2