A=1\41+1\42+1\43+...+1\79+1\80.chung minh A >7\12
Chứng minh:7/12< 1/41+1/42+1/43+...+1/79+1/80<1
A<10(1/40+1/50+1/70+1/60)=319/420<1
A>10(1/50+1/60+1/70+1/80)>7/12
=>7/12<A<1
Chứng minh rằng: 1/41+1/42+1/43+..........+1/79+1/80>7/12
Chững minh rằng : 1/41 + 1/42 + 1/43 +... + 1/79 + 1/80 > 7/12
Chứng minh rằng: 1/41+1/42+1/43+...+1/79+1/80 >7/12
Chứng minh rằng :
1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
chứng minh rằng:
1/41+1/42+1/43+.....+1/79+1/80 >7/12
ta có tổng trên >1/60*20+1/80*20=1/3+1/4=8/12
suy ra tổng trên lờn hơn 7/12
a, cho A = 9999931999 - 5555571997
Chứng minh rằng A chia hết cho 5
b, Chứng tỏ rằng :
\(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+....+\dfrac{1}{79}+\dfrac{1}{80}\) >\(\dfrac{7}{12}\)
Ta có:
A=9999931999−5555571997
A=9999931998.999993−5555571996.555557
A=(9999932)999.999993 − (5555572)998.555557
A=\(\overline{\left(....9\right)}^{999}\) . 999993 - \(\overline{\left(...1\right)}.\text{555557}\)
A=\(\overline{\left(...7\right)}-\overline{\left(...7\right)}\)
A= \(\overline{\left(...0\right)}\)
Vì A có tận cùng là 0 nên \(A⋮5\)
Cho A = 1/41+1/42+1/43+...+1/78+1/79+1/80. Chứng tỏ: A > 7/12
a) cho A =999993^1999 - 555557^4997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏrằng : 1/41+1/42+1/43+...+1/79+1/80>7/12