Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 6 2017 lúc 6:47

a) Gọi O là tâm đường tròn ngoại tiếp. Do tam giác ABC là tam giác đều nên O đồng thời là trọng tâm tam giác đều ABC.

Giải bài 3 trang 99 SGK hình học 10 | Giải toán lớp 10

Lại có:

+ O là trọng tâm tam giác nên Giải bài 3 trang 99 SGK hình học 10 | Giải toán lớp 10

+ Bán kính đường tròn ngoại tiếp tam giác:

Giải bài 3 trang 99 SGK hình học 10 | Giải toán lớp 10

Giải bài 3 trang 99 SGK hình học 10 | Giải toán lớp 10

Ta có: NA2 + NB2 + NC2 ngắn nhất

⇔ NO2 ngắn nhất vì R không đổi

⇔ NO ngắn nhất

⇔ N là hình chiếu của O trên d.

Bình luận (0)
Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 11:28

Gọi cạnh tam giác là a thì \(a=R\sqrt{3}\)

Do tính đối xứng của đường tròn và tam giác đều, không mất tính tổng quát, giả sử M nằm trên cung nhỏ BC

\(\Rightarrow\widehat{BMC}=180^0-\widehat{BAC}=120^0\)

\(\Rightarrow AM.BC=AB.CM+AC.BM\Leftrightarrow AM=BM+CM\)

\(\Rightarrow S=\left(BM+CM\right)^2+2BM^2-3CM^2\)

\(=3BM^2+2BM.CM-2CM^2\)

Lại có: \(BC^2=BM^2+CM^2-2MB.MC.cos\widehat{BMC}\)

\(=BM^2+CM^2+MB.MC\Rightarrow MB.MC=3R^2-BM^2-CM^2\)

\(\Rightarrow S=6R^2+BM^2-4CM^2\)

Gọi I là điểm thỏa mãn \(\overrightarrow{BI}-4\overrightarrow{CI}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BI}=\dfrac{4}{3}\overrightarrow{BC}\)

\(\Rightarrow BI=\dfrac{4\sqrt{3}}{3}R\) ; \(CI=\dfrac{\sqrt{3}}{3}R\)

\(S=6R^2+\left(\overrightarrow{BI}+\overrightarrow{IM}\right)^2-4\left(\overrightarrow{CI}+\overrightarrow{IM}\right)^2\)

\(S=6R^2+BI^2-4CI^2-3IM^2=10R^2-3IM^2\)

\(S_{max}\) khi \(IM_{min}\Rightarrow M\equiv C\Rightarrow S=CA^2+2CB^2=9R^2\)

Bình luận (1)
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 22:25

Hmm, sao lại không có nhỉ, thử cách khác.

O đồng thời là trọng tâm tam giác

\(S=\left(\overrightarrow{MO}+\overrightarrow{OA}\right)^2+2\left(\overrightarrow{MO}+\overrightarrow{OB}\right)^2-3\left(\overrightarrow{MO}+\overrightarrow{OC}\right)^2\)

\(=OA^2+2OB^2-3OC^2+2\overrightarrow{MO}\left(\overrightarrow{OA}+2\overrightarrow{OB}-3\overrightarrow{OC}\right)\)

\(=2\overrightarrow{MO}\left[\overrightarrow{CO}+\overrightarrow{OA}+2\overrightarrow{CO}+2\overrightarrow{OB}\right]\)

\(=2\overrightarrow{MO}\left(\overrightarrow{CA}+2\overrightarrow{CB}\right)=2\overrightarrow{MO}.\overrightarrow{CE}\)

Với E là điểm sao cho \(\overrightarrow{CA}+2\overrightarrow{CB}=\overrightarrow{CE}\)

Ta có: \(AE=CD=2BC=2\sqrt{3}R\) ; \(\widehat{CAE}=120^0\)

\(\Rightarrow CE=\sqrt{AC^2+AE^2-2AC.AE.cos120^0}=R\sqrt{21}\)

\(S=2\overrightarrow{MO}.\overrightarrow{CE}=2MO.CE.cos\left(\widehat{MO};\overrightarrow{CE}\right)=2R.R\sqrt{21}.cos\left(\overrightarrow{MO};\overrightarrow{CE}\right)\)

\(=2\sqrt{21}R^2.cos\left(\overrightarrow{MO};\overrightarrow{CE}\right)\le2\sqrt{21}R^2\)

\(\Rightarrow S_{max}=2\sqrt{21}R^2\) khi \(\overrightarrow{OM}\) cùng chiều \(\overrightarrow{CE}\)

Lần này chắc là đúng rồi, sai sót của bài làm cũ ở chỗ biểu thức S không đối xứng A; B; C nên việc giả sử M nằm trên cung nhỏ BC là sai 

 

Bình luận (0)
Nguyễn Việt Lâm
21 tháng 1 2021 lúc 22:26

undefined

Update thêm cái hình vẽ cho bạn dễ hình dung

Bình luận (0)
Phùng Gia Bảo
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
Cô Hoàng Huyền
19 tháng 12 2017 lúc 14:15

Bài 1: 

A B C H F D E K L

+) Chứng minh tứ giác BFLK nội tiếp:

Ta thấy FAH và LAH  là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\)  (Hai góc nội tiếp cùng chắn cung AF)

Lại có \(\widehat{AHF}=\widehat{FBK}\)   (Cùng phụ với góc \(\widehat{FAH}\)  )

Vậy nên   \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)

+) Chứng minh tứ giác CELK nội tiếp:

Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)

Suy ra tứ giác CELK nội tiếp.

Bình luận (0)
Cô Hoàng Huyền
19 tháng 12 2017 lúc 14:22

Các bài còn lại em tách ra nhé.

Bình luận (0)
Nguyễn Huệ Lam
Xem chi tiết
Nguyễn Thị Thủy
Xem chi tiết
Nguyễn Tất Đạt
14 tháng 1 2019 lúc 19:11

A B C L' K O J E D I F L

Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K  thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.

Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)

Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)

Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)

Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'

=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp 

Áp dụng phương tích đường tròn có: FK.FC=FD.FL'   (1)

Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF

=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g)  => FA2 = FK.FC        (2)

Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)

=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2

Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp

Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L

Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2

Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).

Bình luận (0)
Vũ Tiến Minh
Xem chi tiết
Nguyễn Hà Linh
Xem chi tiết
Adu vip
Xem chi tiết