Cho tam giác ABC có M là trung điểm của AB. Chứng minh: MC < AC + CB/ 2 .
Cho tam giác ABC có M là trung điểm của AB. Chứng minh MC < AC+CB/2
Giup mình với!! Mình đang cần gấp !!
Cho tam giác ABC có AB=AC, M là trung điểm của AB.M là trung điểm AB,AE là tia phân giác góc BAC (E thuộc BC).Trên tia đối của tia MC lấy điểm K sao cho MC=MK
a. Chứng minh rằng: BK//AC
b. Chứng minh tam giác ACE=tam giác ABE
c. Trên tia AB lấy điểm D( B nằm giữa A và D), trên tia AC lấy điểm E( C nằm giữa A và E) sao cho BD= CE. Chứng minh rằng BE= CD.
a: Xét tứ giác AKBC có
M là trung điểm của đường chéo CK
M là trung điểm của đường chéo AB
Do đó: AKBC là hình bình hành
Suy ra: BK//AC
b: Xét ΔABE và ΔACE có
AB=AC
\(\widehat{BAE}=\widehat{CAEE}\)
AE chung
Do đó: ΔABE=ΔACE
Cho tam giác ABC có AB=AC, M là trung điểm của AB.M là trung điểm AB,AE là tia phân giác góc BAC (E thuộc BC).Trên tia đối của tia MC lấy điểm K sao cho MC=MK
a. Chứng minh rằng: BK//AC
b. Chứng minh tam giác ACE=tam giác ABE
c. đường thẳng KB cắt AE ở I.CM tam giác IAK vuông
a: Xét tứ giác AKBC có
M là trung điểm của đường chéo CK
M là trung điểm của đường chéo AB
Do đó: AKBC là hình bình hành
Suy ra: BK//AC
b: Xét ΔABE và ΔACE có
AB=AC
\(\widehat{BAE}=\widehat{CAEE}\)
AE chung
Do đó: ΔABE=ΔACE
Cho tam giác ABC có AB = AC . AM là tia phân giác của góc BAC ( M thuộc CB) .
a) Chứng minh tam giác BAM bằng tam giác CAM.
b) Chứng minh M là trung điểm BC.
c) Chứng minh AM vuông góc BC.
\(a,\left\{{}\begin{matrix}AB=AC\\\widehat{BAM}=\widehat{CAM}\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta BAM=\Delta CAM\left(c.g.c\right)\\ b,\Delta BAM=\Delta CAM\\ \Rightarrow MB=MC\\ \Rightarrow M\text{ là trung điểm }BC\\ c,\Delta BAM=\Delta CAM\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\\ \text{Mà }\widehat{AMB}+\widehat{AMC}=180^0\\ \Rightarrow\widehat{AMB}=90^0\\ \Rightarrow AM\bot BC\)
Cho tam giác ABC vuông tại A (AB<AC) có AH là đường cao.
a) Chứng minh: tam giác HBA đồng dạng với tam giác ABC.
b) Trên tia đối của tia AB lấy điểm D sao cho AD=AB. Gọi M là trung điểm của AH.
Chứng minh: HD . AC = BD . MC
c) Chứng minh: MC vuông góc với DH
a) Xét tam giác AHB và tam giác CAB có:
Góc AHB=góc CAB=90 độ(gt)
Góc B chung
=> tam giác AHB đồng dạng tam giác CAB(g.g)
b) Xét tam giác ABC vuông tại A(gt) có: BC2= AB2 + AC2 = 225+400=625 => BC=25(cm) (pitago)
Ta có: SABC = 1/2.AB.AC = 1/2.15.20 = 150(cm2)
Nên SABC= 1/2.AH.BC=1/2.AH.25=150(cm2) => AH=12(cm)
Xét tam giác ABC vuông tại H(đường cao AH) có: BH2=AB2-AH2(pitago) => BH=9(cm)
Vậy...
c) Ta có AC/BD=20/30=2/3
Và AM/BH=6/9=2/3
=> AC/BD=AM/BH
Mặt khác ta có Góc ABC+ Góc BAH=90 độ(Góc AHB=90 độ)
Mà góc HAC+ góc BAH=90 độ(vì góc BAC=90 độ)
=> Góc ABC= Góc CAM
Xét tam giác DBH và tam giác CAM có:
Góc ABC = Góc CAM(cmt)
AC/BD=AM/BH(cmt)
=> Tam giác DBH đồng dạng tam giác CAM(c.g.c)
=> HD/MC=BD/AC => HD/BD=MC/AC hay HD.AC=BD.MC
Bạn quang ơi, bạn lấy số liệu ở đâu ra vậy??
Cho tam giác ABC có Â = 40 độ, AB=AC, H là trung điểm của BC
a) Chứng minh tam giác ABC cân, tính góc ABC, ACB
b) Chứng minh AH vuông góc BC
c) Đường trung trực của AC cắt CB tại M. Chứng minh tam giác AMC cân
d) Trên tia đối của tia AM lấy N sao cho AN=MB . Chứng minh AM=NC?
a: Xét ΔABC có AB=AC
nên ΔABC cân tại A
Suy ra: \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
c: Ta có: M nằm trên đường trung trực của AC
nên MA=MC
hay ΔMAC cân tại M
Cho tam giác ABC có ba góc nhọn (AB<AC), hai đường cao BD và CE cắt nhau tại H.
1. Chứng minh tam giác ABD đồng dạng tam giác ACE, từ đó suy ra AB. AE = AC.AD
2. Chứng minh tam giác ADE đồng dạng tam giác ABC
3. Gọi I là giao điểm của DE và CB và M là trung điểm của BC. Chứng minh ID.IE=IM2-MC2
4. Biết BC=15. Tính P = BH.BD + CH.CE
ĐÁP ÁN BÀI HÌNH CÂU 3, 4 ĐỀ THI TOÁN 8 KỲ 2 TINH BẮC NINH NĂM HỌC 2014-2015
3. Từ ID.IE=IM2-MC2 = ( IM - MC ) ( IM + MC ) = IB. IC ( vì MB = MC ). Xét tam giác IDB và tam giác IEC có góc I chung, góc IDB = góc ICE ( vì phụ với hai góc bằng nhau góc ADE = góc ABC theo câu 2). suy ra tam giác IBD đồng dạng tam giác IEC(g-g). suy ra ID/IC = IB/IIE => ID.IE = IB.IC hay ID.IE=IM2-MC2.(đpcm).
4. Hạ đường cao AH cắt BC tại K. Chứng minh được tam giác BHK đồng dạng tam giác BCD và tam giác CHK đồng dạng tam giác CBE (g-g). Suy ra BH. BD = BC. BK và CH.CE = BC. CK => P = BH.BD + CH.CE = BC ( BK+CK ) = BC. BC= BC2
Thay BC = 15 vào biểu thức ta được P = BH.BD + CH.CE = 152 = 225.
Cho tam giac abc có ab=3cm;ac=4cm;bc=5cm
a)tam giác abc là tam giác gì ?Tại sao?
b)gọi m là trung điểm của ab trên tia đối của mc lấy D sao cho md=mc.Chứng minh tam giác amc=tam giác bmd và bd song song ac
c)Kẻ trung tuyến be của tam giac abc (e thuộc ac) cắt mc tại g; qua e kẻ ef song song vói ab (f thuộc bc) . Chứng minh ba điểm a g f thẳng hàng
d) chứng minh be^2+cm^2=5/4bc^2
cho tam giác ABC có AB = AC và M là trung điểm của BC. Gọi N là trung điểm của AB, trên tia đối của tia NC lấy điểm K sao cho NK = NC
a) chứng minh tam giác ABM = ACM
b) chứng minh AK = 2.MC
c) chứng minh: AM vuông góc AK
a) Xét 2 tam giác ABM và ACM:
+ MB=MC
+ AB=AC
+ Cạnh AM chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Xét 2 tam giác ANK và BNC
+ NK=NC
+ NA=NB
+ Góc ANK = góc BNC ( hai góc đối đỉnh )
\(\Rightarrow\Delta ANK=\Delta BNC\left(c.g.c\right)\)
\(\Rightarrow AK=BC\)( hai cạnh tương ứng )
Mà M là trung điểm của BC nên BC=2MC
\(\Rightarrow AK=2.MC\)
c) Ta có \(\widehat{AKN}=\widehat{BCN}\)( hai góc tương ứng của hai tam giác bằng nhau )
Mà hai góc AKN và BCN là cặp góc so le trong
\(\Rightarrow AK//BC\)
Vì hai tam giác ABM=ACM nên góc AMB= góc AMC ( hai góc tương ứng )
Mà góc AMB + AMC = 180 độ ( kề bù )\
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\Rightarrow AM\perp BC\)
Mà AK//BC
\(\Rightarrow AM\perp AK\)