Tìm các số nguyên dương a,b thỏa mãn
\(\frac{5}{a}-\frac{b}{3}=\frac{1}{6}\)
a) Tính tổng S=\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
b) Tìm các số nguyên dương thỏa mãn
\(\frac{5}{a}-\frac{b}{3}=\frac{1}{6}\)
2S=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)
=\(1-\frac{1}{15}=\frac{14}{15}\)
\(\Rightarrow S=\frac{7}{15}\)
a. Ta có:A= 1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15
A=1/2(1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15)
A=1/2(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15)
A=2(1-1/15)
A=1/2.14/15
A=7/15
phần b nè
pt \(\Rightarrow90-6ab=3a\)\(\Leftrightarrow3a\left(b+2\right)=90\)vì b>0 \(\Leftrightarrow a=\frac{30}{b+2}\)mà a,b \(\inℕ^∗\)
\(\Rightarrow\)b+2\(\inƯ\left(30\right)\)MÀb\(\inℕ^∗\)\(b+2\in\left\{3;5;6;10;15;30\right\}\)khi đó tìm đc b \(\rightarrow\)thau vào tìm a . nhớ thử lại vào pt ban đầu nhé
k cho mk nha mn ^.^
Tìm các số nguyên dương a;b;c thỏa mãn :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
Tìm các số nguyên a,b thỏa mãn điều kiện: \(\frac {5}{a}-\frac {b}{3}=\frac {1}{6}\)\frac {5}{a}
tìm các cặp số nguyên dương (a,b) thỏa mãn:\(\frac{a}{3}\)=\(\frac{1}{a+b}\)
\(\frac{a}{3}\)=\(\frac{1}{a+b}\)
a(a+b)=3=1.3( vì a b nguyên dương không lấy giá trị âm)
th1 a=1 => a+b=3 => b=2
TH2 a=3 => a+b=1 => b= -2 loại
\(\frac{a}{3}=\frac{1}{a+b}\)
a(a + b) = 3 = 3 . 1 = (-3) . (-1)
TH1: a= 3
3 + b = 1 => b= -2
TH2: a = 1
1 + b = 3 => b = 2
TH3: a = -1
-1 + b = -3 => b = -2
TH4: a = -3
-3 + b = -1 => b = 2
vậy (a ; b) = (3 ; -2) ; (1 ; 2) ; (-1 ; -2) ; (-3 ; 2)
1/tìm số n nguyên dương thỏa mãn
\(\sqrt{\left(3+2\sqrt{2}\right)^n}+\sqrt{\left(3-2\sqrt{2}\right)^n}=6\)
2/ cho a, b là các số dương thỏa mãn \(1\le a\le b\le2\)
tìm GTLN của \(A=\frac{a}{b}+\frac{b}{a}\)
Tìm các số nguyên a,b thỏa mãn điều kiện: \(\frac {5}{a}+\frac {b}{3}=\frac {1}{6}\)
a) Cho a, b, c là ba số nguyên dương nguyên tố cùng nhau thỏa mãn: \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) hỏi a + b có là số chính phương không? vì sao?
b) Cho x, y, z là các số dương thỏa mãn: z ≥ 60, x + y + z = 100. Tìm GTLN của A = xyz
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương
cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ
Tìm số nguyên dương n lớn nhất để bất đẳng thức sau thỏa mãn
\(\frac{1}{\sqrt[n]{\left(na+b+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+nb+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+b+nc\right)^4}}\le\frac{3}{16}\)
trong đó a,b,c là các số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\)
Đặt bđt là (*)
Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :
\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)
\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)
Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)
Hay \(n\le2\)
Với n=2 . Thay vào (*) : ta cần CM BĐT
\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)
Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)
Tương tự ta có:
\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)
Ta cần CM:
\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)
=> đpcm
Dấu '=' xảy ra khi a=b=c
=> số nguyên dương lớn nhất : n=2( thỏa mãn)
Với a,b là 2 số nguyên dương thỏa mãn : \(\frac{1}{a}+\frac{1}{b}=\frac{1}{4}\)Tìm 2 số nguyên dương a và b đó