Bài 1. Cho tam giác ABC có AB = AC. Trên cạnh AB, AC lấy điểm M, N sao cho AM = AN. a)Chứng minh: Tam giác AMN cân.
b)Chứng minh: BN = CM.
c)Chứng minh: MN // BC.
Help me
Cho Tam giác ABC cân tại A trên cạnh AB lấy M trên AC lấy N sao cho AM = AN . Gọi E là giao điểm của CM và BN
a) chứng minh BN = CM
b) chứng minh IBC cân
c) MN // BC
a) Xét ΔBMC và ΔCNB có :
BM=CN ( AB=AC; AM=AN )
góc B = góc C ( ΔABC cân tại A )
BC : chung
suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )
suy ra : đpcm
b) chứng minh EBC cân nha em
Từ : ΔBMC = ΔCNB
suy ra : góc MCB = góc NBC ( 2 góc tương ứng )
suy ra : đpcm
c) ta có : ΔABC cân tại A
suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)
ta lại có : ΔAMN cân tại A
suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)
Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )
Bài 4: Cho tam giác ABC có AB = AC. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho AM = AN.
a)Chứng minh BN = CM.
b)Gọi I là giao điểm của BN và CM. Chứng minh ∆ BIM = ∆ CIN.
c)Chứng minh AI là phân giác của BÂC.
d)Chứng minh MN // BC.
Cần Gấp ạ
a) Xét tam giác ABN và tam giác ACM:
+ AB = AC (gt).
+ \(\widehat{A}\) chung
+ AM = AN (gt).
\(\Rightarrow\) Tam giác ABN = Tam giác ACM (c - g - c).
\(\Rightarrow\) BN = CM (2 cạnh tương ứng).
b) Ta có: AB = AM + MB; AC = AN + NC.
Mà AB = AC (gt); AM = AN (gt).
\(\Rightarrow\) MB = NC.
Ta có: \(\widehat{BMI}+\widehat{AMI}=180^{o}.\)
\(\widehat{CNI}+\widehat{ANI}=180^{o}.\)
Mà \(\widehat{AMI}=\widehat{ANI}\) (Tam giác ABN = Tam giác ACM).
\(\Rightarrow\) \(\widehat{BMI}=\widehat{CNI}.\)
Xét tam giác BIM và tam giác CIN:
+ \(\widehat{BMI}=\widehat{CNI}(cmt).\)
+ \(\widehat{MBI}=\widehat{NCI}\) (Tam giác ABN = Tam giác ACM).
+ MB = NC (cmt).
\(\Rightarrow\) Tam giác BIM = Tam giác CIN (g - c - g).
c) Xét tam giác BAI và tam giác CAI có:
+ AI chung.
+ AB = AC (gt).
+ BI = CI (Tam giác BIM = Tam giác CIN)
\(\Rightarrow\) Tam giác BAI = Tam giác CAI (c - c - c).
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).
\(\Rightarrow\) AI là phân giác \(\widehat{BAC}.\)
d) Xét tam giác AMN có: AM = AN (gt).
\(\Rightarrow\) Tam giác AMN cân tại A.
\(\Rightarrow\) \(\widehat{AMN}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (1)
Xét tam giác ABC có: AB = AC (gt).
\(\Rightarrow\) Tam giác ABC cân tại A.
\(\Rightarrow\) \(\widehat{ABC}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (2)
Từ (1); (2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}.\Rightarrow\) \(MN\) // \(BC.\)
Bài 4: Cho tam giác ABC có AB = AC. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho AM = AN.
a) Chứng minh BN = CM.
b) Gọi I là giao điểm của BN và CM. Chứng minh ∆ BIM = ∆ CIN.
c) Chứng minh AI là phân giác của góc BÂC.
d) Chứng minh MN // BC.
Cho tam giác ABC cân tại A. Lấy M thuộc cạnh AB và N thuộc cạnh AC sao cho AM=AN.
a) Chứng minh rằng tam giác AMN cân
b) Chứng minh MN//BC
c) Gọi I là giao điểm của CM và BN. Chứng minh 2 tam giác BIC và MIN cân
d) Gọi E là trung điểm MN, F là trung điểm BC. Chứng minh A,E,F,I thẳng hàng
Bài làm
a) Xét tam giác AMN có:
AM = AN
=> Tam giác AMN cân tại A.
b) Xét tam giác ABC cân tại A có:
\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\) (1)
Xét tam giác AMN cân tại A có:
\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{B}=\widehat{M}\)
Mà hai góc này ở vị trí đồng vị.
=> MN // BC
c) Xét tam giác ABN và tam giác ACM có:
AN = AM ( gt )
\(\widehat{A}\) chung
AB = AC ( Vì tam giác ABC cân )
=> Tam giác ABN = tam giác ACM ( c.g.c )
=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )
Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)
\(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)
Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )
\(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )
=> \(\widehat{IBC}=\widehat{ICB}\)
=> Tam giác BIC cân tại I
Vì MN // BC
=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )
\(\widehat{NMI}=\widehat{ICB}\)( so le trong )
Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )
=> \(\widehat{MNI}=\widehat{NMI}\)
=> Tam giác MIN cân tại I
d) Xét tam giác cân AMN có:
E là trung điểm của MN
=> AE là trung tuyến
=> AE là đường trung trực.
=> \(\widehat{AEN}=90^0\) (1)
Xét tam giác cân MNI có:
E là trung điểm MN
=> IE là đường trung tuyến
=> IE là trung trực.
=> \(\widehat{IEN}=90^0\) (2)
Cộng (1) và (2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng. (3)
Xét tam giác cân BIC có:
F là trung điểm BC
=> IF là trung tuyến
=> IF là trung trực.
=> \(\widehat{IFC}=90^0\)
Và MN // BC
Mà \(\widehat{IFC}=90^0\)
=> \(\widehat{IEN}=90^0\)
=> E,I,F thẳng hàng. (4)
Từ (3) và (4) => A,E,I,F thẳng hàng. ( đpcm )
# Học tốt #
2/ Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M, trên cạnh AC lấy điếm N sao cho AM = AN.
a. Chứng minh rằng Tam giác AMN là tam giác cân.
b. Chứng minh rằng: MN // BC.
c. Chứng minh rằng: tam giác MBC bằng tam giác NCB.
a: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
b: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
b) -Ta có:
\(\widehat{BAC}=180^0-2\widehat{AMN}\) (Tam giác AMN cân tại A).
\(\widehat{BAC}=180^0-2\widehat{ABC}\) (Tam giác ABC cân tại A).
=>\(\widehat{AMN}=\widehat{ABC}\) mà 2 góc này ở vị trí so le trong.
=>MN//BC
Bài 2:
a) Vì \(AM=AN\) (giả thiết)
\(\Rightarrow\Delta AMN\) cân tại \(A\)
b) Vì \(\Delta AMN\) cân tại \(A\) (chứng minh trên)
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}\) (1)
Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)
\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}\)
Mà \(2\) góc này ở vị trí đồng vị
\(\Rightarrow MN//BC\)
c) Ta có: \(\left\{{}\begin{matrix}AM+MB=AB\left(M\in AB\right)\\AN+NC=AC\left(N\in AC\right)\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}AM=AC\left(cmt\right)\\AB=AC\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow MB=NC\)
Xét \(\Delta MBC\) và \(\Delta NCB\) có:
\(MB=NC\left(cmt\right)\)
\(\widehat{MBC}=\widehat{NCB}\) (do \(\Delta ABC\) cân tại \(A\))
\(BC\) là cạnh chung
\(\Rightarrow\Delta MBC=\Delta NCB\left(c.g.c\right)\)
Cho Tam giác ABC có AB = 4cm, AC = 6cm. Trên cạnh AB và AC lần lượt lấy điểm M và N sao cho AM =1cm, AN = 1,5cm. a) Chứng minh MN // BC b) Biết MP // AC, chứng minh Tam giác AMN đồng dạng với Tam giác MBP. c) Tìm tỉ số diện tích của Tam giác AMP và Tam giác ACP. MÌNH CHỦ YẾU CẦN CÂU C NHA
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)\(\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
M\(\in\)AB(gt)
N\(\in\)AC(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
Bài 1 cho tam giác ABC có AB=AC, góc C=70 độ tính góc A và góc B
bài 2 Cho tam giác ABC cân tại A Trên cạnh AB AC lần lượt lấy hai điểm M N sao cho AM = AN gọi giao điểm của BN và CM là I chứng minh rằng tam giác BIC cân
LÀM NHANH GIÚP MINH NHE
Bài 1 :
Xét \(\Delta ABC\)có AB = AC (gt)
=> \(\Delta ABC\)cân tại A
=> \(\widehat{B}=\widehat{C}\)
MÀ \(\widehat{C}=\)70
=> \(\widehat{B}=\)70
Xét \(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{A}+70^0+70^o=180^o\)
=> \(\widehat{A}=180^0-140^o=40^0\)
Vậy \(\widehat{A}=40^0;\widehat{B}=70^0\)
cho tgiac ABC cân tại A lấy điểm M,N lần lượt trên cạnh AB và AC sao cho AM=AN
a) chứng minh MN//BC
b)Chứng minh BM=CN
c) cminh Tam giác AMN = Tam giác CNM
a: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
b: AM+MB=AB
AN+NC=AC
mà AM=AN và AB=AC
nên MB=NC
c: Đề sai rồi bạn
Cho tam giác ABC đều. Trên cạnh AB lấy M và trên cạnh AC lấy N sao cho AM=AN
a) Chứng minh: Tam giác AMN đều
b) Chứng minh: MN//BC
Bài 13: Cho ABC có AB = 6cm BC = 8 cm; AC = 10 cm; Tia phân giác của góc A cắt cạnh BC tại M; trên cạnh AC lấy điểm N sao cho AB = AN
a) ABC là tam giác gì ? Vì sao ? b) Chứng minh MN AC
c)Chứng minh AM là đường trung trực của đoạn thẳng BM
d*) Qua C kẻ đường thẳng song song với NB cắt tia AB tại T. Chứng minh 3 điểm T; M; N thẳng hàng
a: AC^2=BA^2+BC^2
=>ΔABC vuông tại B
b: Xét ΔABM và ΔANM có
AB=AN
góc BAM=góc NAM
AM chung
=>ΔABM=ΔANM
=>góc ANM=90 độ
=>MN vuông góc AC
c: AB=AN
MB=MN
=>AM là trung trực của BN
d: CT//BN
BN vuông góc AM
=>AM vuông góc CT
Xét ΔATC có
AM,CB là đường cao
AM cắt CB tại M
=>M là trực tâm
=>TM vuông góc AC
mà MN vuông góc AC
nên T,M,N thẳng hàng