Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng bình phương
Xem chi tiết
Nguyễn thành Đạt
3 tháng 2 2023 lúc 21:28

a) Xét ΔBMC và ΔCNB có :

          BM=CN ( AB=AC; AM=AN )

          góc B = góc C ( ΔABC cân tại A )

         BC : chung

suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )

suy ra : đpcm

b) chứng minh EBC cân nha em

Từ : ΔBMC = ΔCNB

suy ra : góc MCB = góc NBC ( 2 góc tương ứng )

suy ra : đpcm

c) ta có : ΔABC cân tại A

suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)

ta lại có : ΔAMN cân tại A 

suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)

Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )

Help Me
Xem chi tiết
Thanh Hoàng Thanh
8 tháng 1 2022 lúc 9:07

a) Xét tam giác ABN và tam giác ACM:

+ AB = AC (gt).

\(\widehat{A}\) chung

+ AM = AN (gt).

\(\Rightarrow\) Tam giác ABN = Tam giác ACM (c - g - c).

\(\Rightarrow\) BN = CM (2 cạnh tương ứng).

b) Ta có: AB = AM + MB; AC = AN + NC.

Mà AB = AC (gt); AM = AN (gt).

\(\Rightarrow\) MB = NC.

Ta có: \(\widehat{BMI}+\widehat{AMI}=180^{o}.\)

          \(\widehat{CNI}+\widehat{ANI}=180^{o}.\)

Mà \(\widehat{AMI}=\widehat{ANI}\) (Tam giác ABN = Tam giác ACM).

\(\Rightarrow\) \(\widehat{BMI}=\widehat{CNI}.\)

Xét tam giác BIM và tam giác CIN:

\(\widehat{BMI}=\widehat{CNI}(cmt).\)

\(\widehat{MBI}=\widehat{NCI}\) (Tam giác ABN = Tam giác ACM).

+ MB = NC (cmt).

\(\Rightarrow\) Tam giác BIM = Tam giác CIN (g - c - g).

c) Xét tam giác BAI và tam giác CAI có:

+ AI chung.

+ AB = AC (gt).

+ BI = CI (Tam giác BIM = Tam giác CIN)

\(\Rightarrow\) Tam giác BAI = Tam giác CAI (c - c - c).

\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).

\(\Rightarrow\) AI là phân giác \(\widehat{BAC}.\)

d) Xét tam giác AMN có: AM = AN (gt).

\(\Rightarrow\) Tam giác AMN cân tại A.

\(\Rightarrow\) \(\widehat{AMN}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (1)

Xét tam giác ABC có: AB = AC (gt).

\(\Rightarrow\) Tam giác ABC cân tại A.

\(\Rightarrow\) \(\widehat{ABC}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (2)

Từ (1); (2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}.\Rightarrow\) \(MN\) // \(BC.\)

Bài 4: Cho tam giác ABC có AB = AC. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho AM = AN.
a) Chứng minh BN = CM.

 b) Gọi I là giao điểm của BN và CM. Chứng minh ∆ BIM = ∆ CIN.
c) Chứng minh AI là phân giác của góc BÂC.

 d) Chứng minh MN // BC.

van
Xem chi tiết

A B C M N I E F

Bài làm

a) Xét tam giác AMN có:

AM = AN 

=> Tam giác AMN cân tại A.

b) Xét tam giác ABC cân tại A có:

\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\)                                            (1) 

Xét tam giác AMN cân tại A có:

\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\)                                         (2) 

Từ (1)(2) => \(\widehat{B}=\widehat{M}\)

Mà hai góc này ở vị trí đồng vị.

=> MN // BC

c) Xét tam giác ABN và tam giác ACM có:

AN = AM ( gt )

\(\widehat{A}\) chung

AB = AC ( Vì tam giác ABC cân )

=> Tam giác ABN = tam giác ACM ( c.g.c )

=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )

Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)

          \(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )

      \(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )

=> \(\widehat{IBC}=\widehat{ICB}\)

=> Tam giác BIC cân tại I

Vì MN // BC

=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )

     \(\widehat{NMI}=\widehat{ICB}\)( so le trong )

Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )

=> \(\widehat{MNI}=\widehat{NMI}\)

=> Tam giác MIN cân tại I

d) Xét tam giác cân AMN có:

E là trung điểm của MN

=> AE là trung tuyến  

=> AE là đường trung trực.

=> \(\widehat{AEN}=90^0\)                    (1) 

Xét tam giác cân MNI có:

E là trung điểm MN

=> IE là đường trung tuyến

=> IE là trung trực.                            

=> \(\widehat{IEN}=90^0\)        (2) 

Cộng (1)(2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng.                      (3) 

Xét tam giác cân BIC có:

F là trung điểm BC

=> IF là trung tuyến

=> IF là trung trực.

=> \(\widehat{IFC}=90^0\)                

Và MN // BC

Mà \(\widehat{IFC}=90^0\)

=> \(\widehat{IEN}=90^0\)

=> E,I,F thẳng hàng.             (4) 

Từ (3)(4) => A,E,I,F thẳng hàng. ( đpcm )

# Học tốt #

Khách vãng lai đã xóa
Nguyễn Phương Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 1 2022 lúc 20:41

a: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

b: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

c: Xét ΔMBC và ΔNCB có 

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)

BC chung

Do đó: ΔMBC=ΔNCB

Dr.STONE
31 tháng 1 2022 lúc 20:54

b) -Ta có:

\(\widehat{BAC}=180^0-2\widehat{AMN}\) (Tam giác AMN cân tại A).

\(\widehat{BAC}=180^0-2\widehat{ABC}\) (Tam giác ABC cân tại A).

=>\(\widehat{AMN}=\widehat{ABC}\) mà 2 góc này ở vị trí so le trong.

=>MN//BC

Nguyễn Thái Thịnh
31 tháng 1 2022 lúc 21:29

Bài 2:

a) Vì \(AM=AN\) (giả thiết)

\(\Rightarrow\Delta AMN\) cân tại \(A\)

b) Vì \(\Delta AMN\) cân tại \(A\) (chứng minh trên)

\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}\) (1)

Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)

\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}\)

Mà \(2\) góc này ở vị trí đồng vị

\(\Rightarrow MN//BC\)

c) Ta có: \(\left\{{}\begin{matrix}AM+MB=AB\left(M\in AB\right)\\AN+NC=AC\left(N\in AC\right)\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}AM=AC\left(cmt\right)\\AB=AC\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow MB=NC\) 

Xét \(\Delta MBC\) và \(\Delta NCB\) có:

\(MB=NC\left(cmt\right)\)

\(\widehat{MBC}=\widehat{NCB}\) (do \(\Delta ABC\) cân tại \(A\))

\(BC\) là cạnh chung

\(\Rightarrow\Delta MBC=\Delta NCB\left(c.g.c\right)\)

Lã Thị Thảo Vt
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 4 2021 lúc 21:02

a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1}{4}\)

\(\dfrac{AN}{AC}=\dfrac{1.5}{6}=\dfrac{1}{4}\)

Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)\(\left(=\dfrac{1}{4}\right)\)

Xét ΔABC có 

M\(\in\)AB(gt)

N\(\in\)AC(gt)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(cmt)

Do đó: MN//BC(Định lí Ta lét đảo)

Phan van anh
Xem chi tiết
Nguyễn Ngọc Linh
23 tháng 2 2020 lúc 21:07

Bài 1 : 

Xét \(\Delta ABC\)có AB = AC (gt)

=> \(\Delta ABC\)cân tại A

=> \(\widehat{B}=\widehat{C}\)

MÀ \(\widehat{C}=\)70

=> \(\widehat{B}=\)70

Xét \(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=>                       \(\widehat{A}+70^0+70^o=180^o\)

=>                     \(\widehat{A}=180^0-140^o=40^0\)

Vậy \(\widehat{A}=40^0;\widehat{B}=70^0\)

Khách vãng lai đã xóa
Vu Huy Hoang
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 7:40

a: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

b: AM+MB=AB

AN+NC=AC

mà AM=AN và AB=AC

nên MB=NC

c: Đề sai rồi bạn

Lê Hồng Ngọc
Xem chi tiết
Nguyên Thủy Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 22:55

a: AC^2=BA^2+BC^2

=>ΔABC vuông tại B

b: Xét ΔABM và ΔANM có

AB=AN

góc BAM=góc NAM

AM chung

=>ΔABM=ΔANM

=>góc ANM=90 độ

=>MN vuông góc AC

c: AB=AN

MB=MN

=>AM là trung trực của BN

d: CT//BN

BN vuông góc AM

=>AM vuông góc CT

Xét ΔATC có

AM,CB là đường cao

AM cắt CB tại M

=>M là trực tâm

=>TM vuông góc AC

mà MN vuông góc AC

nên T,M,N thẳng hàng