a: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
b: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
b) -Ta có:
\(\widehat{BAC}=180^0-2\widehat{AMN}\) (Tam giác AMN cân tại A).
\(\widehat{BAC}=180^0-2\widehat{ABC}\) (Tam giác ABC cân tại A).
=>\(\widehat{AMN}=\widehat{ABC}\) mà 2 góc này ở vị trí so le trong.
=>MN//BC
Bài 2:
a) Vì \(AM=AN\) (giả thiết)
\(\Rightarrow\Delta AMN\) cân tại \(A\)
b) Vì \(\Delta AMN\) cân tại \(A\) (chứng minh trên)
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}\) (1)
Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)
\(\Rightarrow\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}\)
Mà \(2\) góc này ở vị trí đồng vị
\(\Rightarrow MN//BC\)
c) Ta có: \(\left\{{}\begin{matrix}AM+MB=AB\left(M\in AB\right)\\AN+NC=AC\left(N\in AC\right)\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}AM=AC\left(cmt\right)\\AB=AC\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow MB=NC\)
Xét \(\Delta MBC\) và \(\Delta NCB\) có:
\(MB=NC\left(cmt\right)\)
\(\widehat{MBC}=\widehat{NCB}\) (do \(\Delta ABC\) cân tại \(A\))
\(BC\) là cạnh chung
\(\Rightarrow\Delta MBC=\Delta NCB\left(c.g.c\right)\)