CMR:2100 có 31 chữ số khi viết trong hệ thập phân
Cho M=1+2+2^2+2^3+.....+2^99. CMR số M+1 có 31 chữ số khi viết trong hệ thập phân
A) Trong hệ thập phân, số 8^20 có m chữ số, còn số 25^30 có n chữ số. Tính m+n?
B) CMR khi viết trong hệ thập phân, số 3^20 có 10 chữ số.
chứng minh rằng 2^100 là số có 31 chữ số khi viết kết quả của nó trong hệ thập phân.
chứng minh rằng 2^100 là số có 31 chữ số khi viết kết quả của nó trong hệ thập phân
Ta có:
2^100 = ﴾2^10﴿^10 = 1024^10
10^30 = ﴾10^3﴿^10 = 1000^10
Vì 1024^10 > 1000^10 nên 2^100 > 10^30 ﴾1﴿
Lại có:
2^100 = 2^31.2^63.2^6 = 2^31.512^7.64
và 10^31 = ﴾2.5﴿^31 = 2^31.5^31 = 2^31.5^28.5^3 = 2^31.625^7.125
Vì 2^31.512^7.64 < 2^31.625^7.125 nên 2^100 < 10^31﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ => 2^100 viết trong hệ thập phân có 31 chữ số
Vậy số 2^100 viết trong hệ thập phân có 31 chữ số ﴾đpcm﴿
NHỚ TK MK NHA,MK ĐANG ÂM ĐIỂM
bạn ơi ko hiểu đoạn 2^100=2^31.2^63.2^6 = 2^31.512^7.64
bạn ơi ko hiểu đoạn 2^100 = 2^31,2^63,2^6=2^31.512^7.64
chứng minh 2100 là số có 31 chữ số khi viết kết quả của nó trong hệ thập phân ?
Cho M=1+2+2^2+...+2^99. Chứng tỏ rằng M+1 có 31 chữ số khi viết trong hệ thập phân
Chứng minh rằng : Số \(2^{100}\) viết trong hệ thập phân có 31 chữ số
Ta có \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}>1000^{10}=\left(10^3\right)^{10}=10^{30}\).
Ta chứng minh \(2^{100}< 10^{31}\Leftrightarrow\dfrac{1024^{10}}{1000^{10}}< 10\).
Ta có \(\dfrac{1024^{10}}{1000^{10}}< \dfrac{1025^{10}}{1000^{10}}=\left(\dfrac{41}{40}\right)^{10}\).
Dễ thấy \(\dfrac{41}{40}< \dfrac{40}{39}< ...< \dfrac{32}{31}\Rightarrow\left(\dfrac{41}{40}\right)^{10}< \dfrac{41}{40}.\dfrac{40}{39}...\dfrac{32}{31}=\dfrac{41}{31}< 10\Rightarrow\dfrac{1024^{10}}{1000^{10}}< 10\).
Do đó \(2^{100}\) viết trong hệ thập phân có 31 chữ số.
2 mũ 31 viết trong hệ thập phân có bao nhiêu chữ số ?
\(^{2^{31}}=2147483648\)DO ĐÓ CÓ 10 SỐ:))hahaaaaaaaa
Cho biết trong hệ thập phân 2100 có 31 chữ số. Hỏi trong hệ thập phân 5100 có bao nhiêu chữ số ?