Tìm x và y,biết \(\frac{1}{x}+\frac{1}{y}=\frac{2}{7}\left(x\ne y\right)\)
tính giá trị của các biểu thức sau:
a,\(\frac{9x^5-xy^4-18x^4y+2y^5}{3x^3y^2+xy^4-6x^2y^3-2y^5}\)biết x,y≠0,x≠2y và \(\frac{x}{y}=\frac{2}{3}\)
b,\(\frac{x^2+4y^2-4x\left(y+1\right)+8y-21}{\left(7+2y-x\right)^2-\left(7+2y-x\right)\left(2x+1-4y\right)}\)biết y≠\(\frac{1}{7},\)2y≠-7, 2y-x≠-2 và \(\frac{7x}{7y-1}=2\)
1. Cho \(a,b\in Z;a,b\ne0;a\ne3b;a\ne-5b\). C/m giá trị A là 1 số nguyên lẻ \(A=\frac{b\left(2a^2+10ab+a+5b\right)}{a-3b}:\frac{a^2b+5ab^2}{a^2-3ab}\)
2. Cho \(x+y+z=1\)và \(x\ne-y;y\ne-z;z\ne-x\)
Tính giá trị biểu thức \(Q=\frac{xy+z}{\left(x+y\right)^2}.\frac{yz+x}{\left(y+z\right)^2}.\frac{zx+y}{\left(z+x\right)^2}\)
3. Cho \(xyz=1\).Tính \(P=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y-\frac{1}{y}\right)\left(z-\frac{1}{z}\right)\)
1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)
\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm
2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)
tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1
3) kiểm tra lại xem đề đã chuẩn chưa
\(Cho:\)x ; y ; z là các số khác nhau đôi một \(\left(x\ne y\right);\left(y\ne z\right);\left(x\ne z\right)\)sao cho : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính các tổng sau : \(1.A=\frac{\left(yz-3\right)}{x^2+2yz}+\frac{\left(xz-3\right)}{y^2+2xz}+\frac{\left(xy-3\right)}{z^2+2xy}\)
\(2.B=\frac{\left(x^2-2yz\right)}{x^2+2yz}+\frac{\left(y^2-2xz\right)}{y^2+2xz}+\frac{\left(x^2-2xy\right)}{x^2+2xy}\)
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
Bài 1: Tìm x và y, biết:
\(\frac{x}{y}=\frac{5}{3}\left(x^2+y^2=4\right)\) (x và y là 2 số tự nhiên khác 0 )
Bài 2: Tìm x; y; z biết: \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\left(x+y+z=138\right)\)
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
1. Cho biểu thức Q=\(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
a) Tìm ĐK của x để Q có nghĩa.
b) Rút gọn biểu thức Q.
2. Tìm giá trị lớn nhất của biểu thức: M=\(\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
3. CMR nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
với x≠y, yz≠1, xz≠1, x≠0, y≠0, z≠0
thì \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Tìm x, y, z biết:\(\frac{3\left|x\right|+5}{3}=\frac{3\left|y\right|-1}{5}=\frac{3-z}{7}\)và\(2\left|x\right|+7\left|y\right|+3z=-14\)
\(chox,y,z\ne0;x\ne y;\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}CM:x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Bạn tham khảo câu trả lời của anh Phan Thanh Tịnh nhé
vô phần thống kê hỏi đáp của mình để coi hình nhé
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
\(\Leftrightarrow\left(x^2-yz\right)\left(y-xyz\right)=\left(y^2-xz\right)\left(x-xyz\right)\)
\(\Leftrightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+xy^3z+x^2z-x^2yz^2=0\)
\(\Leftrightarrow xy\left(x-y\right)-xyz\left(x^2-y^2\right)+z\left(x^2-y^2\right)-xyz^2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2\right]=0\)
\(\Leftrightarrow xy-xyz\left(x+y\right)+z\left(x+y\right)-xyz^2=0\left(x\ne y\Rightarrow x-y\ne0\right)\)
\(\Leftrightarrow xy+yz+xz=xyz\left(x+y\right)+xyz^2\)
\(\Leftrightarrow\frac{ay+yz+xz}{xyz}=\frac{xyz\left(x+y\right)+xyz^2}{xyz}\left(xyz\ne0\right)\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\)
Rút gọn:
a/ \(\frac{\left(\sqrt{x^2+9}-3\right)\left(\sqrt{x^2+9}+3\right)\left(x+\sqrt{xy}+y\right)\sqrt{x-2\sqrt{xy}+y}}{x\left(x\sqrt{x}-y\sqrt{y}\right)}\) (với x>0, y\(\ge\)0, x\(\ne\)y
b/ \(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)(với x>0 và x\(\ne\)1
c/ \(\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)(với x>0 và x\(\ne\)1
Tìm x, y, z biết:
\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}=x+y+z\left(y\ne-z;z\ne-x;x\ne-y\right)\)