tính giá trị của biểu thức
E=1/3+1/6+1/10+1/15+1/21+1/28+1/36
Tính giá trị biểu thức:
D=1/6+1/10+1/15+1/21+1/28+1/36+1/45
Tính giá trị biểu thức:
P= 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28 + 1/36 + 1/45
Giải cụ thể giúp mình nha
P=2(1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
P=2((1/2*3)+(1/3*4)+(1/4*5)+(1/5*6)+(1/6*7)+(1/7*8)+(1/8*9)+(1/9*10)
P=2(1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
P=2(1/2-1/10)
P=2*2/5
P=4/5
H NHA.
tính nhanh giá trị của biểu thức: A=\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)
P = 1 - 1 / 10 - 1 / 15 - 1 / 3 - 1 / 28 - 1 / 6 - 1 / 21
Tính giá trị biểu thức.
Giải đầy đủ giùm nha !
ta có
1/2 P=1/2(1-1/10-1/15-1/3-1/28-1/6-1/21)
=1/2-(1/6+1/12+1/20+1/30+1/42+1/56)
=1/2-(1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8)
=1/2-(1/2-1/8)
=1/8
suy ra P=1/4
ta có
1/2 P=1/2(1-1/10-1/15-1/3-1/28-1/6-1/21)
=1/2-(1/6+1/12+1/20+1/30+1/42+1/56)
=1/2-(1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8)
=1/2-(1/2-1/8)
=1/8
suy ra P=1/4
Tính giá trị biểu thức: 1/6 + 1/10 + 1/15 + 1/24 + 1/28 + 1/36 + 1/45
Tính giá trị của biểu thức, tính nhanh nếu có thể:
21) ( 1 + 1/3 ) . ( 1 + 1/8 ) . ( 1 + 1/15 ) . ...... ( 1+ 1/9999)
22) A = \(\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-......+\frac{197}{4851}-\frac{199}{4950}\)
21)
\(\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right).....\left(1+\dfrac{1}{9999}\right)\\ =\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{10000}{9999}\\ =\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{100.100}{99.101}\\ =\dfrac{2.3.4.....100}{1.2.3.....99}.\dfrac{2.3.4.....100}{3.4.5.....101}\\ =100.\dfrac{2}{101}\\ =\dfrac{200}{101}\)
Câu 1: Tính giá trị biểu thức:
a.A=\(\left(\dfrac{136}{15}-\dfrac{28}{5}+\dfrac{62}{10}\right)\).\(\dfrac{21}{24}\)
b.B=\(\dfrac{5}{6}\)+6\(\dfrac{5}{6}\)\(\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right)\):8\(\dfrac{1}{3}\)
c.C=1+3+6+10+15+...+1225.
a: \(A=\left(\frac{136}{15}-\frac{28}{5}+\frac{62}{10}\right)\cdot\frac{21}{24}\)
\(=\left(\frac{272}{30}-\frac{168}{30}+\frac{186}{30}\right)\cdot\frac78\)
\(=\frac{290}{30}\cdot\frac78=\frac{29}{3}\cdot\frac78=\frac{203}{24}\)
b: \(B=\frac56+6\frac56\left(11\frac{5}{20}-9\frac14\right):8\frac13\)
\(=\frac56+\frac{41}{6}\cdot\left(11+\frac14-9-\frac14\right):\frac{25}{3}=\frac56+\frac{41}{6}\cdot2\cdot\frac{3}{25}\)
\(=\frac56+\frac{41}{25}=\frac{125}{150}+\frac{246}{150}=\frac{371}{150}\)
c: \(C=1+3+6+\cdots+1225\)
\(=\frac12\left(2+6+12+\cdots+2450\right)=\frac12\cdot\left(1\cdot2+2\cdot3+\cdots+49\cdot50\right)\)
\(=\frac12\cdot\left\lbrack1\left(1+1\right)+2\left(2+1\right)+\cdots+49\left(49+1\right)\right\rbrack=\frac12\cdot\left\lbrack\left(1+2+\cdots+49\right)+\left(1^2+2^2+\cdots+49^2\right)\right\rbrack\)
\(=\frac12\cdot\left\lbrack49\cdot\frac{50}{2}+\frac{49\left(49+1\right)\left(2\cdot49+1\right)}{6}\right\rbrack\)
\(=\frac12\cdot\left\lbrack49\cdot25+49\cdot50\cdot\frac{99}{6}\right\rbrack=\frac12\cdot\left\lbrack49\cdot25+49\cdot25\cdot33\right\rbrack=\frac12\cdot49\cdot25\cdot\left(33+1\right)\)
\(=49\cdot25\cdot\frac{34}{2}=49\cdot25\cdot17=20825\)
tính nhanh
1+1/3+1/6+1/10+1/15+1/21+1/28+1/36
A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\)
A = 2\(\times\) ( \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\)+ \(\dfrac{1}{72}\))
A =2\(\times\)( \(\dfrac{1}{1\times2}\)+\(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{5\times6}\)+\(\dfrac{1}{6\times7}\)+\(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\))
A = 2 \(\times\) ( \(\dfrac{1}{1}\)- \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+...+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\))
A = 2\(\times\)( 1 - \(\dfrac{1}{9}\))
A = 2 \(\times\) \(\dfrac{8}{9}\)
A = \(\dfrac{16}{9}\)
TÍNH 1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45+1/55+1/66
Bài làm:
Ta có: \(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{66}\)
\(=\frac{1}{1}+\frac{1}{1.3}+\frac{1}{3.2}+...+\frac{1}{11.6}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.1.3}+\frac{1}{2.3.2}+...+\frac{1}{2.11.6}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{12}\right)\)
\(=\frac{1}{2}.\frac{11}{12}\)
\(=\frac{11}{24}\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)
\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)
\(=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{9\times10}+\frac{1}{10\times11}+\frac{1}{11\times12}\right)\)
\(=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\right)\)
\(=2\times\left(1-\frac{1}{12}\right)\)
\(=2\times\frac{11}{12}\)
\(=\frac{11}{6}\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)
\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\right)\)
\(=2\left(1-\frac{1}{12}\right)=2.\frac{11}{12}=\frac{22}{12}=\frac{11}{6}\)