Cho p và 10p-1 là 2 số nguyên tố (p>3). Chứng minh rằng 5p-1 là hợp số
a) cho p và 10p+1 là số nguyên tố (p>3). chứng minh rằng 5p+1 là hợp số.
b) cho p và 8p2 - 1 là số nguyên tố (p>3). chứng minh rằng 8p2 + 1 là hợp số.
Cho p và 10p + 1 là hai số nguyên tố (p>3). Chứng minh rằng : 5p + 1 là hợp số .
Vì p >3 nên p sẽ có 1 trong 2 dạng: 3k+1 hoặc 3k+2 (k thuộc N*)
+ Nếu p=3k+1 thì 10p+1=30k+11 => 5p+1=15k+6 là hợp số.
+ Nếu p=3k+2 thì 10p+1=30k+21 => 5p+1=15k+11 là hợp số.
vì p > 3 nên p không là 2 hoặc 3
các số nguyên tố lớn hơn 3 phải là số tự nhiên lẻ
=> 5p là số lẻ
Vậy 5p + 1 là số chẵn ( hợp số )
Cho p và 10p +1 đều là các số nguyên tố. Chứng minh rằng 5p +1 là hợp số
Lời giải:
\(\bullet\)Nếu $p=2$ thì \(10p+1\not\in \mathbb{P}\) (loại)
\(\bullet\) Nếu \(p=3\Rightarrow 10p+1\in\mathbb{P}\). Cùng lúc đó \(5p+1=16\) là hợp số.
\(\bullet\) Nếu \(p>3\Rightarrow p\not\vdots 3\). Xét 2 TH:
TH1: \(p=3k+1\)
Khi đó \(5p+1=5(3k+1)+1=15k+6\vdots 3\) . Mà \(15k+6>3\) nên là hợp số.
TH2: \(p=3k+2\Rightarrow 10p+1=30k+21\vdots 3\), lớn hơn $3$ nên không thể là số nguyên tố (trái với đkđb)
Từ các trường hợp trên, ta có đpcm.
Cho p và 10p +1 đều là các số nguyên tố. Chứng minh rằng 5p +1 là hợp số
p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p + 1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
Mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p + 1 chia hết cho 2.3 = 6
=> 5p + 1 là hợp số
Câu trả lời hay nhất: 1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố
đặt k = 3n+r (với r = 0, 1, 2)
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1
nên ta phải có r = 0
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2
=> r = 0
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6
3) p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
1.Chứng minh rằng :Nếu p là số nguyên tố lớn hơn 3 thì (p+1).(p-1)⋮24
2.Cho p và 10p+1 là số nguyên tố lớn hơn 3.Chứng minh rằng 5p+1 là hợp số.
mọi người giúp em hai câu này với
mai em nộp rồi huhu
Bài 1:
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ
vậy p + 1 và p - 1 là hai số chẵn.
Mà p + 1 - (p - 1) = 2 nên p + 1 và p - 1 là hai số chẵn liên tiếp.
đặt p - 1 = 2k thì p + 1 = 2k + 2 (k \(\in\) N*)
A = (p + 1).(p - 1) = (2k + 2).2k = 2.(k + 1).2k = 4.k.(k +1)
Vì k và k + 1 là hai số tự nhiên liên tiếp nên chắc chẵn phải có một số chia hết cho 2.
⇒ 4.k.(k + 1) ⋮ 8
⇒ A = (p + 1).(p - 1) ⋮ 8 (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng:
p = 3k + 1; hoặc p = 3k + 2
Xét trường hợp p = 3k + 1 ta có:
p - 1 = 3k + 1 - 1 = 3k ⋮ 3
⇒ A = (p + 1).(p - 1) ⋮ 3 (2)
Từ (1) và (2) ta có:
A ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23; ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) B(24) ⇒ A ⋮ 24 (*)
Xét trường hợp p = 3k + 2 ta có
p + 1 = 3k + 2 + 1 = 3k + 3 = 3.(k + 1) ⋮ 3 (3)
Từ (1) và (3) ta có:
A = (p + 1).(p - 1) ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)
3 = 3; 8 = 23 ⇒ BCNN(3; 8) = 23.3 = 24
⇒ A \(\in\) BC(24) ⇒ A \(⋮\) 24 (**)
Kết hợp (*) và(**) ta có
A \(⋮\) 24 (đpcm)
Bài 2:
P = 10p + 1 và p là số nguyên tố lớn hơn 3 chứng minh 5p + 1 là hợp số
Ta có vì p là số nguyên tố lớn hơn 3 nên p là số lẻ
⇒ p = 2k + 1 (k \(\in\) N*)
ta có: \(\left\{{}\begin{matrix}p=2k+1\\10p+1=10.\left(2k+1\right)+1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}5p=5.\left(2k+1\right)\\10p+1=20k+11\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}5p=10k+5\\10p+1=20k+11\end{matrix}\right.\)
⇒ 10p + 1 - 5p = 20k + 11 - (10k + 5)
⇒ 5p + 1 = 20k + 11 - 10k - 5
⇒ 5p + 1 = 10k + 6
⇒ 5p + 1 = 2.(5k + 3)
⇒ 5p + 1 ⋮ 1; 1; (5k + 3)
⇒ 5p + 1 là hợp số (đpcm)
cho p và 10p-1 là số nguyên tố ( p>3 ) chứng minh 5p-1 là hợp số
Vì p là SNT>3. suy ra p có dạng 3k+1 hoặc 3k+2
với p=3k+1 thì 10p-1=10(3k+1)-1
=30k+11-1
30k+10(loại vì chia hết cho 2)
với p=3k+2 thì 10p-1=10(3k+2)-1
=30k+20-1
=30k+19(chọn)
thay p=3k+2 thì 5p-1=5(3k+2)-1
=15k+10-1
=15k+9 là hợp số vì chia hết cho3
Vậy p và 10p-1 là SNT (p>3) thì 5p-1 là hợp số
cho p và 10p+1 là số nguyên tố p>3.chứng minh 5p+1 là hợp số
1. Cho p và 2p + 1 là các số nguyên tố (p>3). Chứng minh rằng 4p + 1 là hợp số.
2. Cho p và 10p + 1 là các số nguyên tố (p>3). Chứng minh rằng 5p + 1 là hợp số.
3. Cho p và 8p2 - 1 là các số nguyên tố (p>3. Chứng minh rằng 8p2 + 1 là hợp số.
4. Ta biết rằng có 25 số nguyên tố nhỏ hơn 100. tổng của 25 số nguyên tố đó là số chẵn hay số lẻ. Vì sao?
5. Tổng của 3 số nguyên tố bằng 1012. Tìm số nguyên tố nhỏ nhất.
Cho : p và 10p+1 là các số nguyên tố lớn hơn 3 . Chứng minh : 5p+1 là hợp số ?
Vì p và 10p+1 là các số nguyên tố lớn hơn 3 nên p phải có một trong hai dạng: \(3k+1;3k+2\) (\(k\in N^{\cdot}\))
+) Nếu \(p=3k+2\) thì \(10p+1=10\left(3k+2\right)+1\) \(=30k+21=3\left(10k+7\right)\) > 3 và chia hết cho 3 (là hợp số nên loại)
\(\Rightarrow\) p phải có dạng \(3k+1\). Khi đó: \(5p+1=5\left(3k+1\right)+1\)
\(=15k+6=3\left(5k+2\right)\) > 3 và chia hết cho 3 (là hợp số)
\(\Rightarrowđpcm\)