cho tam giác ABC cân tại A, M là trung điểm cạnh BC. chứng minh AM vuông góc với BC
Cho tam giác ABC cân tại A. Trên cạnh BC lấy D , trên tia đối của tia CB lấy E sao cho BD=CE . Qua Đ kẻ đường thẳng vuông góc BC cắt AM tại M. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại N.
A) chứng minh MD=NE
B) Gọi I là giao điểm của MN,BC , chứng minh I là trung điểm MN
C) Đường thẳng vuông góc với MN, kẻ qua I cắt tia phân giác của góc BAC tại O. Chứng minh tam giác OBM = tam giác OCN
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
b) theo câu a, ta có:MD=NE
I1=I2(2 góc đđ)
DMI=90-I1
ENI=90-I2
suy ra DMI=ENI
xét tam giác MDI và tam giác NIE
MD=NE( theo câu a)
DMI=ENI(cmt)
MDI=NEI=90
suy ra tam giác MDI=NIE(g.c.g)
suy ra IM=IN suy ra I là trung điểm của MN
: Cho tam giác ABC vuông cân tại A. Trên cùng một nửa mặt phẳng chứa điểm A, bờ là BC vẽ các tia Bx và Cy cùng vuông góc với BC. Lấy M thuộc cạnh BC ( M khác A và B); đường thẳng vuông góc với AM tại A cắt Bx, Cy lần lượt tại H và K.
a, Chứng minh: BM = CK
b, Chứng minh A là trung điểm của HK
c, Gọi P là giao điểm của AB và MN, Q là giao điểm của AC và MK.
d, Chứng minh: PQ song song với BC.
Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM .
a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC
b) Chứng minh AM=AN
c) Chứng minh AI vuông góc với BC
Bài 2 : Cho tam giác vuông tại A có góc C=30 độ
a) Tính góc B
b) Vẽ tia phân giác của góc B cắt AC tại D
c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD
D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD
Tính góc AKB
Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC
a) Chứng minh tam giác AKB=tam giác AKC
b) Chứng minh AK vuông góc với BC
c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D,E sao cho BD=DE=EC. Gọi M là trung điểm cuả DE
a, chứng minh AM vuông góc với BC
b, So sánh các độ dài AB,AC,AD,AE
Cho tam giác ABC vuông cân tại A. M là trung điểm BC. E là điểm nằm giữa M và C ( không trùng với M và C ). Vẽ BH vuông góc với AE tại H, CK vuông góc với AE tại K.
1) Chứng minh BH=AK
2) Tam giác MHK vuông cân
3) Gọi I là trung điểm của AH. Chứng minh IM vuông góc BK
xét tam giác BAH có \(\widehat{BHA}=90^0\)
\(\Rightarrow\widehat{ABH}+\widehat{BAH}=90^0\)( 2 Góc phụ nhau )
mà \(\widehat{BAH}+\widehat{KAC}=\widehat{BAC}=90^0\)
\(\Rightarrow\widehat{ABH}=\widehat{KAC}\)
Xét \(\Delta ABH\)và \(\Delta CAK\)có:
\(\hept{\begin{cases}\widehat{BHA}=\widehat{AKC}=90^0\\AB=AC\left(gt\right)\\\widehat{ABH}=\widehat{KAC}\left(cmt\right)\end{cases}\Rightarrow\Delta ABH=\Delta CAK\left(ch-gn\right)}\)
\(\Rightarrow BH=AK\)( 2 cạnh tương ứng ).
cho tam giác ABC vuông tại A
a) trên cạnh BC lấy D sao cho BA=BD.từ D vẽ Dx vuông với BC (DC cắt AC tại H). chứng minh BH là tia phân giác góc ABC
b) vẽ trung tuyến AM. chứng minh tam giác ABM cân
a: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
BA=BD
=>ΔBAH=ΔBDH
=>góc ABH=góc DBH
=>BH là phân giác của góc ABD
b: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MB
=>ΔMAB cân tại M
Cho tam giác ABC vuông cân tại A, D là một điểm bất kì trên BC. Vẽ 2 tia Bx và Cy cùng vuông góc với BC và nằm cùng một nửa mặt phẳng bờ BC, chứa điểm A. Qua A vẽ một đường vuông góc với BD cắt Bx tại M, Cy tại N. Chứng minh
a, AM=AD.
b, A là trung điểm của MN.
c, Tam giác DMN vuông cân.
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho BE = CF. Nối È cắt BC tại O. Kẻ EI song song với AF ( I thuộc BC )
d) chứng minh tam giác BEI là tam giác cân.
b) chứng tỏ OE = OF.
c) đường thẳng qua B và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại O. CHỨNG tỏ tam giác EKF là tam giác cân và OK vuông góc với EF.
Bài 1: Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
a) Chứng minh rằng :HB=HC
b) Chứng minh rằng: AH là tia phân giác của góc A
Bài 2: Cho tam giác ABC cân tại A có góc A < 90 độ. Vẽ BM vuông góc với AC tại M, CN vuông góc với AB tại N
a) Chứng minh AM= AN
b) Gọi I là giao điểm của BM và CN. Chứng minh rằng AI là tia phân giác của góc A.
b1
a) CM tam giác chứaHB và chứa HC = nhau
b) CM tam giác chứa 2 góc A = nhau