chứng minh rằng \(1^3+2^3+3^3+...+2016^3\)
luôn là số chính phương
1. Chứng minh rằng, các tổng sau không phảo la số chính phương:
a)A=2+22+23+...+22015
b)B=3+32+33+...+32016
c)C=53+54+55+...+52016
2. Một số chính phương có chữ số hàng đơn vị là 6. Chứng minh rằng, chữ số hàng chục là số lẻ.
Chứng minh rằng: A= 13+23+33+43+...+20163 là số chính phương
Chứng minh 1^3+2^3+3^3+...+2016^3 là số chính phương
Tham khảo đề bài và cách làm nha bạn !
Đề bài : chứng minh số 1^3+2^3+3^3+...+10^3 là số chính phương .
Giải
Ta có : 13 + 23 + 33 + ... + 103= 102 . (10 + 1 ) 2 \(⋮\) 4 = 4. 52 .112\(⋮\)4 = 52 . 112 = (5.11 )2= 552 là số chính phương
\(1^3+2^3+3^3+...+2016^3\)
\(=2016^2.\left(2016+1\right)^2\)
\(=2016^2.2017^2\)
\(=\left(2016.2017\right)^2\) là số chính phuong
ti.k nhanh nha bn
Cho B = (n^2 − 1)(n + 3)(n + 5) + 16. Chứng minh rằng với mọi số nguyên n thì B luôn có giá trị là số chính phương.
\(B=\left(n-1\right)\left(n+5\right)\left(n+1\right)\left(n+3\right)+16\)
\(=\left(n^2+4n-5\right)\left(n^2+4n+3\right)+16\)
\(=\left(n^2+4n\right)^2-2\left(n^2+4n\right)-15+16\)
\(=\left(n^2+4n-1\right)^2\) là số chính phương
\(B=\left(n^2-1\right)\left(n+3\right)\left(n+5\right)+16\\ \Rightarrow B=\left(n-1\right)\left(n+1\right)\left(n+3\right)\left(n+5\right)+16\\ \Rightarrow B=\left[\left(n-1\right)\left(n+5\right)\right]\left[\left(n+1\right)\left(n+3\right)\right]+16\\ \Rightarrow B=\left(n^2+4n-5\right)\left(n^2+4n+3\right)+16\\ \Rightarrow B=\left(n^2+4n-5\right)\left(n^2+4n-5+8\right)+16\\ \Rightarrow B=\left(n^2+4n-5\right)^2+8\left(n^2+4n-5\right)+16\\ \Rightarrow B=\left(n^2+4n-5+4\right)^2\\ \Rightarrow B=\left(n^2+4n-1\right)^2\)
Vậy B là số chính phương với mọi số nguyên n
Cho A=1+3+32+...+42016
Chứng minh rằng: A không phải là số chính phương
Làm cho mình nha cảm ơn các bạn trước
CHO A=5=5^2+5^3...+5^2016
a)tìm x để 4A + 5 =5^x
b)Chứng minh tích của 4 số tụ nhiên liên tiếp +1 luôn là chính phương
a)Có A=5+52+53+...+52016
=>5A=52+53+...+52017
=>4A=5A-A=52017-5
=>4A+5=52017-5+5=52017=5x
=>x=2017
b) Gọi 4 số tự nhiên liên tiếp là : k;k+1;k+2;k+3
Có k(k+1)(k+2)(k+3)+1
=k(k+3)(k+1)(k+2)+1
=(k2+3k)(k2+3k+2)+1
Đặt k2+3k=A
=A(A+2)+1
=A2+2A+1
=(A+1)2
=>ĐPCM
Tìm GTNN của biểu thức sau: A=4x^2-4xy+5y^2+20x-6y+2044
Bài 1: Chứng minh rằng mọi số nguyên x, y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương
Bài 3: Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương .
Bài 1: Chứng minh rằng mọi số nguyên x, y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.
Giải: Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x2 + 5xy + 4y2)(x2 + 5xy + 6y2) + y4
Đặt x2 + 5xy + 5y2 = t (t ∈ Z) thì
A = (t - y2)(t + y2) + y4 = t2 - y4 + y4 = t2 = (x2 + 5xy + 5y2)2
Vì x, y, z ∈ Z nên x2 ∈ Z, 5xy ∈ Z, 5y2 ∈ Z => (x2 + 5xy + 5y2) ∈ Z
Vậy A là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.
Giải: Gọi 4 số tự nhiên, liên tiếp đó là n, n + 1, n + 2, n + 3 (n ∈ Z). Ta có:
n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương.
Bài 3: Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương .
Ta có k(k+1)(k+2) = 1/4 k(k+1)(k+2).4 = 1/4 k(k+1)(k+2).[(k+3) – (k-1)]
= 1/4 k(k+1)(k+2)(k+3) - 1/4 k(k+1)(k+2)(k-1)
→ S = 1/4.1.2.3.4 - 1/4.0.1.2.3 + 1/4.2.3.4.5 - 1/4.1.2.3.4 +...+ 1/4k(k+1)(k+2)(k+3) - 1/4k(k+1)(k+2)(k-1) = 1/4k(k+1)(k+2)(k+3)
4S + 1 = k(k+1)(k+2)(k+3) + 1
Theo kết quả bài 2 → k(k+1)(k+2)(k+3) + 1 là số chính phương.
1. Tìm các số nguyên x, y để :
x,(y-5) = -9
2. Chứng minh rằng với mọi số nguyên n thì :
a) A = (n+6).(n+7) luôn luôn chia hết cho 2
b) n2+n+2017 không chia hết cho 2
3. Cho a và b là hai số nguyên không chia hết cho 3 nhưng có cùng số dư khi chia cho 3. Chứng minh rằng hai số đó trừ 1 lại chia hết cho 3.
4. Cho A = 20+21+22+...+22017. Hỏi A có là số chính phương không? Vì sao ; A+1 có là số chính phương không?
chứng minh rằng tổng P=1+3+3^2+3^3+............+3^61+3^62 là số chính phương
3P = 3 + 3^2 + 3^3 + 3^4 +...+ 3^62 + 3^63
=> 3P - P = (3 + 3^2 + 3^3 + 3^4 +...+ 3^62 + 3^63) - (1 + 3 + 3^2 + 3^3 + ... + 3^61 + 3^62)
=> 2P = -1 +3^63
=> P = -1 + 3^63/2
Có : 3^63 = (3^4)15 . 3^3 = 81^15 . 27 = ....1 . 27 = ....7
=> 3^63 -1 = ....6
Từ đó thì bạn cứ suy ra mấy bước nhỏ nữa là xong thôi