tính hợp lý nếu có thể
\(\frac{2}{3}-\frac{7}{3}:2\frac{4}{5}\)
câu 1 tính hợp lý nếu có thể
\(a,\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
giúp mik với !!!
dễ thế mà
chỉ là tính thôi có j đâu
\(\left(\frac{-3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=\left(\frac{-3}{4}+\frac{2}{5}+\frac{3}{5}+\frac{-1}{4}\right):\frac{3}{7}\)
\(=\left[\left(\frac{-3}{4}+\frac{-1}{4}\right)+\left(\frac{2}{5}+\frac{3}{5}\right)\right]:\frac{3}{7}\)
\(=\left(-1+1\right):\frac{3}{7}\)
\(=0:\frac{3}{7}\)
\(=0\)
Học tốt
Bài làm:
Ta có: \(\left(-\frac{3}{4}+\frac{2}{5}\right)\div\frac{3}{7}+\left(\frac{3}{5}+\frac{-1}{4}\right)\div\frac{3}{7}\)
\(=\left(-\frac{3}{4}+\frac{2}{5}+\frac{3}{5}-\frac{1}{4}\right)\div\frac{3}{7}\)
\(=\left[\left(-\frac{3}{4}-\frac{1}{4}\right)+\left(\frac{2}{5}+\frac{3}{5}\right)\right].\frac{7}{3}\)
\(=\left(-1+1\right).\frac{7}{3}\)
\(=0.\frac{7}{3}=0\)
(\(\frac{2}{5}\))6 . (\(\frac{25}{4}\))2 (câu này tính hợp lý nếu có thể)
\(\frac{100}{123}:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)(câu này tính hợp lý nếu có thể)
Tính hợp lý nếu có thể:
\(\frac{4}{7}+\left(\frac{4}{5}-\frac{3}{4}\right)\cdot\frac{5}{7}\)
\(=\frac{4}{7}+\frac{4}{7}-\frac{15}{28}\)
=\(\frac{4}{7}.\left(1+1-0,9375\right)\)
=\(\frac{17}{28}\approx0,61\)
tính hợp lý nếu có thể:
a, \(\frac{9\times\left(-3\right)^6-5\times3^7}{2^4\times\left(-3\right)^7}\)
b,\(\frac{\frac{5}{22}+\frac{3}{13}-\frac{1}{2}}{\frac{4}{13}-\frac{2}{11}+\frac{3}{2}}\)
Bài 1 : Thực hiện phép tính hợp lý (nếu có thể)
\(b.\frac{1}{125}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)
\(c.1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)
Tính hợp lý nếu có thể:
a) \(2\frac{1}{7}:\left(\frac{1}{15}-1\frac{2}{5}\right)-2\frac{1}{7}:\left(\frac{17}{15}+2\frac{1}{5}\right)\)
b) \(\left(\frac{-2}{3}\right)^{-4}.\left(-4\right)^2-\left[\left(\frac{7}{3}\right)^0\right]^{2016}-10\frac{1}{3}\)
a) A = \(\frac{15}{7}:\left(\frac{1}{15}-\frac{7}{5}\right)-\frac{15}{7}:\left(\frac{17}{15}+\frac{11}{5}\right)=\frac{15}{7}:\frac{-20}{15}-\frac{15}{7}:\frac{50}{15}\)
A = \(\frac{15}{7}.\frac{15}{-20}-\frac{15}{7}.\frac{15}{50}=\frac{15}{7}.\left(\frac{-15}{20}-\frac{15}{50}\right)=\frac{15}{7}.\frac{-105}{100}=-\frac{9}{4}\)
b) B = \(\frac{1}{\left(-\frac{2}{3}\right)^4}.\left(-4\right)^2-1^{2016}-10\frac{1}{3}=\frac{1}{\frac{16}{81}}.16-1-10\frac{1}{3}=\frac{81}{16}.16-1-10\frac{1}{3}\)
B = \(81-1-10-\frac{1}{3}=70-\frac{1}{3}=\frac{209}{3}\)
Tính bằng cách hợp lý (nếu có thể) :
A = \(\frac{6}{2\cdot2}+\frac{5}{2\cdot13}+\frac{3}{13\cdot4}+\frac{2}{4\cdot18}+\frac{10}{18\cdot7}\)
\(\Rightarrow A=4.\left[\frac{6}{2.\left(2.4\right)}+\frac{5}{\left(2.4\right).13}+\frac{3}{13.\left(4.4\right)}+\frac{2}{\left(4.4\right).18}+\frac{10}{18.\left(7.4\right)}\right]\)
\(=4.\left(\frac{6}{2.8}+\frac{5}{8.13}+\frac{3}{13.16}+\frac{2}{16.18}+\frac{10}{18.28}\right)=4.\left(\frac{1}{2}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{18}+\frac{1}{18}-\frac{1}{28}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{28}\right)=4.\frac{13}{28}=\frac{13}{7}\)
Tính giá trị của biểu thức sau (tính hợp lí, nếu có thể):
a) \(\frac{{ - 3}}{7}.\frac{2}{5} + \frac{2}{5}.\left( { - \frac{5}{{14}}} \right) - \frac{{18}}{{35}}\)
b) \(\left( {\frac{2}{3} - \frac{5}{{11}} + \frac{1}{4}} \right):\left( {1 + \frac{5}{{12}} - \frac{7}{{11}}} \right)\);
c) \(\left( {13,6 - 37,8} \right).\left( { - 3,2} \right)\)
d) \(\left( { - 25,4} \right).\left( {18,5 + 43,6 - 16,8} \right):12,7\)
a) \(\frac{{ - 3}}{7}.\frac{2}{5} + \frac{2}{5}.\left( { - \frac{5}{{14}}} \right) - \frac{{18}}{{35}}\)
\(\begin{array}{l} = \frac{2}{5}.\left( {\frac{{ - 3}}{7} + \frac{{ - 5}}{{14}}} \right) - \frac{{18}}{{35}}\\ = \frac{2}{5}.\left( {\frac{{ - 6}}{{14}} + \frac{{ - 5}}{{14}}} \right) - \frac{{18}}{{35}}\\ = \frac{2}{5}.\frac{{ - 11}}{{14}} - \frac{{18}}{{35}} = \frac{{ - 11}}{{35}} - \frac{{18}}{{35}} = \frac{{ -29}}{{35}}\end{array}\)
b) \(\left( {\frac{2}{3} - \frac{5}{{11}} + \frac{1}{4}} \right):\left( {1 + \frac{5}{{12}} - \frac{7}{{11}}} \right)\)
\(\begin{array}{l} = \left( {\frac{{2.11.4}}{{3.11.4}} - \frac{{5.3.4}}{{11.3.4}} + \frac{{1.3.11}}{{4.3.11}}} \right):\left( {\frac{11.12}{11.12} + \frac{{5.11}}{{12.11}} - \frac{{7.12}}{{11.12}}} \right)\\ = \left( {\frac{{88 - 60 + 33}}{{121}}} \right):\left( { \frac{{121+55 - 84}}{{121}}} \right)\\ = \frac{{61}}{{121}}:\frac{{92}}{{121}} = \frac{{61}}{{121}}.\frac{{121}}{{92}}= \frac{{61}}{{92}}\end{array}\)
c) \(\left( {13,6 - 37,8} \right).\left( { - 3,2} \right)\)
\( = \left( { - 24,2} \right).\left( { - 3,2} \right) = 77,44\)
d) \(\left( { - 25,4} \right).\left( {18,5 + 43,6 - 16,8} \right):12,7\)
\(\begin{array}{l} = \left( { - 25,4} \right).\left( {62,1 - 16,8} \right):12,7\\ = \left( { - 25,4} \right).45,3:12,7\\ = \left( { - 25,4} \right):12,7.45,3\\ = (- 2).45,3 = - 90,6\end{array}\)
a: \(=\dfrac{2}{5}\cdot\left(-\dfrac{3}{7}-\dfrac{5}{14}\right)-\dfrac{18}{35}\)
\(=\dfrac{2}{5}\cdot\dfrac{-6-5}{14}-\dfrac{18}{35}\)
\(=\dfrac{2}{5}\cdot\dfrac{-11}{14}-\dfrac{18}{35}=-\dfrac{22}{70}-\dfrac{18}{35}=\dfrac{-58}{70}=-\dfrac{29}{35}\)
b: \(=\dfrac{88-60+33}{132}:\dfrac{132+55-84}{132}\)
\(=\dfrac{61}{132}\cdot\dfrac{132}{103}=\dfrac{61}{103}\)
c: \(=-24.2\cdot\left(-3.2\right)=24.2\cdot3.2=77.44\)
d: \(=\dfrac{-25.4}{12.7}\cdot45.3=-2\cdot45.3=-90.6\)
Tính hợp lý \(\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{11}}{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}+\frac{\frac{1}{4}-\frac{1}{5}+\frac{1}{7}}{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}}\)
\(\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{11}}{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}+\frac{\frac{1}{4}-\frac{1}{5}+\frac{1}{7}}{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}}\)
\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{3\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}+\frac{1\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}\right)}{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}\right)}\)
\(=\frac{2}{3}+\frac{1}{3}\)
\(=1\)