a,b,x,y là các số nguyên dương thỏa mãn a+b=x+y va a.b+a=x.y. Chứng minh rằng x=y
Chứng minh rằng không tồn tại các số nguyên x,y thỏa mãn \(x^4+y^3+4=0\)
=))xúc phạm mấy đứa IQ thấp:'))
Cho các số thực dương x,y thỏa mãn x + y = 2 . Chứng minh rằng \(\frac{x}{1+y^2}+\frac{y}{1+x^2}\ge1\)
bài 1: Cho các số thực a, b, c thỏa mãn a+b−2c=0 và a2+b2−ca−cb=0.Chứng minh rằng a = b = c.
bài 2: Giả sử a, b là hai số thực phân biệt thỏa mãn a2+4a=b2+4b=1.
a) Chứng minh rằng a + b = −4.
b) Chứng minh rằng a3 + b3 = −76.
c) Chứng minh rằng a4 + b4 = 322.
Bài 1:
Ta có: a + b - 2c = 0
⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:
(2c − b)2 + b2 + (2c − b).b − 3c2 = 0
⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0
⇔ b2 − 2bc + c2 = 0
⇔ (b − c)2 = 0
⇔ b − c = 0
⇔ b = c
⇒ a + c − 2c = 0
⇔ a − c = 0
⇔ a = c
⇒ a = b = c
Vậy a = b = c
Chuyên Hải Dương 2010:
Cho trước \(a,b\in R\); gọi x,y là 2 số thực dương thỏa mãn \(\hept{\begin{cases}x+y=a+b\\x^3+y^3=a^3+b^3\end{cases}}\)
Chứng minh rằng :\(x^{2011}+y^{2011}=a^{2011}+b^{2011}\)
Ta có \(\hept{\begin{cases}x+y=a+b\\x^3+y^3=a^3+b^3\end{cases}\left(1\right)}\)
\(\left(1\right)\Leftrightarrow\hept{\begin{cases}x+y=a+b\\\left(x+y\right)^3-3xy\left(x+y\right)=\left(a+b\right)^3-3ab\left(a+b\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=a+b\\xy\left(a+b\right)=ab\left(a+b\right)\end{cases}\left(2\right)}\)
Nếu \(a+b\ne0\)thì \(\left(2\right)\Leftrightarrow\hept{\begin{cases}x+y=a+b\\xy=ab\end{cases}}\)
=> x,y là 2 nghiệm của phương trình \(X^2-\left(a+b\right)X+ab=0\)
Giải ra ta có \(\hept{\begin{cases}x=b\\y=a\end{cases};\hept{\begin{cases}x=a\\y=b\end{cases}}}\)\(\Rightarrow x^{2011}+y^{2011}=a^{2011}+b^{2011}\)(3)
Nếu \(a+b=0\Rightarrow a=-b\)
Ta có hệ phương trình \(\hept{\begin{cases}x+y=0\\x^3+y^3=0\end{cases}\Rightarrow x=-y}\)
\(\Rightarrow\hept{\begin{cases}x^{2011}+y^{2011}=0\\a^{2011}+y^{2011}=0\end{cases}}\)\(\Rightarrow x^{2011}+y^{2011}=a^{2011}+b^{2011}\)(4)
Từ (3) và (4) => đpcm
Cho a,b,c là các số nguyên khác 0 thỏa mãn:
bc = a2 và b+c= -2|-a|-3
Chứng minh rằng: b,c là 2 số nguyên âm
Cho các số thực dương x,y thỏa mãn xy+x+1 = 3y. Chứng minh rằng x3.y3+1≥2y3
\(xy+x+1=3y\Rightarrow x+\dfrac{1}{y}+\dfrac{x}{y}=3\)
Ta có:
\(x^3+1+1\ge3x\)
\(\dfrac{1}{y^3}+1+1\ge\dfrac{3}{y}\)
\(x^3+\dfrac{1}{y^3}+1\ge\dfrac{3x}{y}\)
Cộng vế:
\(2\left(x^3+\dfrac{1}{y^3}\right)+5\ge3\left(x+\dfrac{1}{y}+\dfrac{x}{y}\right)=9\)
\(\Rightarrow x^3+\dfrac{1}{y^3}\ge2\)
\(\Rightarrow x^3y^3+1\ge2y^3\) (đpcm)
Dấu "=" xảy ra khi \(x=y=1\)
Cho các số a,b,c,m,n,p nguyên dương thỏa mãn : \(a^2+b^2+c^2\text{=}m^2+n^2+p^2\)
Chứng minh rằng : a + b + c + m + n + p là hợp số.
Ta có: \(a^2+b^2+c^2=m^2+n^2+p^2\)
\(\Rightarrow a^2+b^2+c^2+m^2+n^2+p^2=2\left(m^2+n^2+p^2\right)\)
Vì \(2\left(m^2+n^2+p^2\right)⋮2\)\(\Rightarrow a^2+b^2+c^2+m^2+n^2+p^2⋮2\)(1)
Vì tích hai số tự nhiên liên tiếp chia hết cho 2 nên:
\(a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+m\left(m-1\right)\)
\(+n\left(n-1\right)+p\left(p-1\right)\)là số chẵn
\(\Rightarrow\left(a^2+b^2+c^2+m^2+n^2+p^2\right)-\left(a+b+c+m+n+p\right)⋮2\)(2)
Từ (1) và (2) suy ra a + b + c + m + n + p chia hết cho 2
Mà a + b + c + m + n + p > 2 ( do a,b,c,m,n,p dương) nên a + b + c + m + n + p là hợp số (đpcm)
Cho các số a,b, c,x,y,z là các số dương thoả mãn ax + by + cz = xyz
Chứng minh rằng : \(x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(\frac{ax+by+cz}{xy}=z\Rightarrow z=\frac{a}{y}+\frac{b}{x}+\frac{cz}{xy}>\frac{a}{y}+\frac{b}{x}\)
Tương tự có \(y>\frac{a}{z}+\frac{c}{x}\); \(x>\frac{b}{z}+\frac{c}{y}\)
\(\Rightarrow x+y+z>\frac{b+c}{x}+\frac{a+c}{y}+\frac{a+b}{z}=\frac{b+c}{x}+x+\frac{a+c}{y}+y+\frac{a+b}{z}+z-x-y-z\)
\(\Rightarrow2\left(x+y+z\right)>2\sqrt{b+c}+2\sqrt{a+c}+2\sqrt{a+b}\)
\(\Rightarrow x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)