Chứng tỏ: 1/1.2+1/1.2.3+1/1.2.3.4+...+1/1.2.3...100<1
chứng tỏ \(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...100}< 1\)
1. Chứng tỏ: 1/1.2+1/1.2.3+1/1.2.3.4+...+1/1.2.3...100<1
2. Tìm các số tự nhiên a và b biết rằng:
1/a - 1/b = 2/3 và b - a = 2
Chứng tỏ: \(\dfrac{1}{1.2}\) + \(\dfrac{1}{1.2.3}\) +\(\dfrac{1}{1.2.3.4}\)+.......+\(\dfrac{1}{1.2.3........100}\) <1
Tính nhanh: 1+1.2+1.2.3+1.2.3.4+...+1.2.3...99+1.2.3....100
tính tổng dãy số thì dễ nhưng hãy viết rõ ràng hơn
tính \(A=\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.....100}\)
bạn ơi hình như đề bài là:
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\)thì phải ha.
CHỨNG MINH: 1/1.2+1/1.2.3+1/1.2.3.4+....+1/1.2.3.4....1000 < 1
\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}\)
Có: \(\frac{1}{1.2.3.4}< \frac{1}{3.4}\)
\(\frac{1}{1.2.3.4.5}< \frac{1}{4.5}\)
..................................
\(\frac{1}{1.2.3.4.....1000}< \frac{1}{999.1000}\)
=>\(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{999.1000}\)
=> \(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{999}-\frac{1}{1000}\)
=> \(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3}-\frac{1}{1000}\)
=> \(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{2}+\frac{1}{1.2.3}+\frac{1}{3}-\frac{1}{1000}\)
=> \(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< \frac{999}{1000}< \frac{1000}{1000}\)
=>\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< 1\)
chung to 1/1.2+1/1.2.3+1/1.2.3.4+...+1/1.2.3.4.5.....100
tính \(A=\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.....100}\)
nhanh nhanh mình cần gấp
nếu muốn chứng minh A < 1 thì làm sao
Cho S = \(\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+\dfrac{3}{1.2.3.4}+....+\dfrac{99}{1.2.3.....99.100}\)
Chứng minh rằng : S<1
\(S=\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+........+\dfrac{99}{1.2.......100}\)
\(=\dfrac{1}{2!}+\dfrac{2}{3!}+....+\dfrac{99}{100!}\)
\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+.......+\dfrac{100-1}{100!}\)
\(=\dfrac{1}{1}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+....+\dfrac{1}{99!}-\dfrac{1}{100!}\)
\(=1-\dfrac{1}{100!}< 1\)
\(\Leftrightarrow S< 1\left(đpcm\right)\)