Tính A=\(\left(1+\frac{8}{10}\right)\left(1+\frac{8}{22}\right)\left(1+\frac{8}{36}\right)...\left(1+\frac{8}{8352}\right)\)
Tính: \(S=\left(1+\frac{8}{10}\right)\left(1+\frac{8}{22}\right)\left(1+\frac{8}{36}\right)...\left(1+\frac{8}{8352}\right)\))
Tính nhanh:
G=\(\left(1+\frac{8}{10}\right)\left(1+\frac{8}{22}\right)\left(1+\frac{8}{36}\right).....\left(1+\frac{8}{8352}\right)\)
G=(1+8/10)(1+8/22)(1+8/36)...(1+8/8352)
18.30.44...8360
G=----------------------------
10.22.36...8352
9.2.10.3.11.4...95.88
G=-----------------------------------
10.1.11.2.12.3...96.87
(9.10.11...95)(2.3.4....88)
G= -----------------------------------------
(10.11.12...96)(2.3.4...87)
9.88.
G= ---------= 33/4.
96
Mình cũng k biết làm bài này, cảm ơn bạn
Tính
\(\left(1+\frac{8}{10}\right).\left(1+\frac{8}{22}\right).\left(1+\frac{8}{36}\right)....\left(1+\frac{8}{8352}\right)\)
\(A=1+2+2^2-2^3+2^4-2^5+...+2^{2016}\)
\(B=\left(1+\frac{8}{10}\right).\left(1+\frac{8}{22}\right).\left(1+\frac{8}{36}\right)...\left(1+\frac{8}{8352}\right)\)
2A=2+2^2+2^3-2^4+...+2^2017
2A+A=2+1+2^2+2+2^2+2^3-2^3+2^4-2^4+...+2^2017-2^2016
3A=1+2^2+2^3+2^2017
A=(1+2^2+2^3+2^2017)/3
Minh giai 1 bai thoi nha
Nho k cho minh voi
C=\(\left(1+\frac{8}{10}\right)\left(1+\frac{8}{22}\right)\left(1+\frac{8}{36}\right)...\left(1+\frac{8}{8362}\right)\)
Kiểm tra bài : Nhân, chia số hữu tỉ
Thực hiện phép tính :
(1) \(-\frac{3}{2}.\frac{7}{10}=\frac{-3.7}{2.10}=\frac{-21}{20}\)
(2) \(\frac{-5}{3}.\frac{6}{11}=\frac{-5.6}{3.11}=\frac{-30}{33}\)
(3) \(2\frac{1}{3}.\left(-1\frac{2}{3}\right)=\frac{7}{3}.\left(-\frac{5}{3}\right)=\frac{7.\left(-5\right)}{3.3}=-\frac{35}{9}\)
(4) \(\frac{9}{10}:\left(-\frac{15}{11}\right)=\frac{9}{10}.\left(\frac{-11}{15}\right)=\frac{9.\left(-11\right)}{10.15}=-\frac{99}{150}=-\frac{33}{50}\)
(5) \(\left(-1\right):\frac{3}{8}=\frac{\left(-1\right).8}{3}=-\frac{8}{3}\)
(6) \(\frac{1}{2}.\left(-\frac{5}{4}\right).\frac{8}{7}=\frac{1.\left(-5\right)}{2.4}.\frac{8}{7}=-\frac{5}{8}.\frac{8}{7}=-\frac{5.8}{8.7}=-\frac{5}{7}\)
(7) \(\frac{-9}{2}.\frac{2}{18}.\frac{1}{7}=\left(-\frac{9}{2}.\frac{2}{18}\right).\frac{1}{7}=\left(-\frac{9.2}{2.18}\right).\frac{1}{7}=-\frac{18}{36}.\frac{1}{7}=-\frac{18.1}{36.7}=-\frac{1}{14}\)
(8) \(\left(\frac{9}{2}-\frac{1}{3}\right).\frac{6}{17}=\left(\frac{27}{6}-\frac{2}{6}\right).\frac{6}{17}=\frac{27-2}{6}.\frac{6}{17}=\frac{25}{6}.\frac{6}{17}=\frac{25.6}{6.17}=\frac{25}{17}\)
(9) \(\left(-\frac{12}{13}:\frac{36}{39}\right).\frac{3}{5}=\left(-\frac{12}{13}.\frac{39}{36}\right).\frac{3}{5}=\left(\frac{-12.39}{13.36}\right).\frac{3}{5}=-\frac{1.3}{5}=-\frac{3}{5}\)
(10) \(\left(-\frac{3}{7}+\frac{7}{9}\right):\frac{4}{7}+\left(-\frac{4}{7}+\frac{2}{9}\right):\frac{4}{7}=\left(\left(-\frac{3}{7}+\frac{7}{9}\right)+\left(-\frac{4}{7}+\frac{2}{9}\right)\right):\frac{4}{7}\)
\(=\left(\left(-\frac{27}{63}+\frac{49}{63}\right)+\left(-\frac{36}{63}+\frac{14}{63}\right)\right):\frac{4}{7}=\left(\left(-\frac{27+49}{63}\right)+\left(\frac{-36+14}{63}\right)\right):\frac{4}{7}\)
\(=\left(\left(\frac{22}{63}\right)+\left(-\frac{22}{63}\right)\right):\frac{4}{7}\)
\(=\frac{22+\left(-22\right)}{63}:\frac{4}{7}=\frac{0}{63}:\frac{4}{7}=0\)
Mình đăng các bài toán này lên thứ nhất là để kiểm tra năng lực thứ hai các bạn có thể xem đây và rút ra lời giải cho các bài khác và nếu mình sai chỗ nào các bạn chỉ mình sẽ chỉnh
TÍNH:
a. \(\frac{\left(\frac{1}{9}\right)^6.\left(\frac{3}{8}\right)^7}{\left(\frac{1}{3}\right)^{13}.\left(\frac{1}{2}\right)^{22}.3^6}\)
b. \(\frac{5^{-6}.\left(\frac{1}{2}\right)^{13}}{\left(\frac{1}{5}\right)^7.\left(\frac{1}{8}\right)^4}\)
Giúp mik vs các bạn nha!!!
a, \(\frac{\left(\frac{1}{9}\right)^6\cdot\left(\frac{3}{8}\right)^7}{\left(\frac{1}{3}\right)^{13}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)
\(=\frac{\left(\frac{1}{\left(3^2\right)^6}\right)\cdot\left(\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{1}{2}\cdot3\right)^7}{\left(\frac{1}{3}\right)^{13}.\left(\frac{1}{2}\right)^{22}.3^6}=\frac{\frac{1}{3^{12}}\cdot\left(\frac{1}{2}\right)^{21}\cdot3^7}{\frac{1}{3^{13}}\cdot\left(\frac{1}{2}\right)^{22}.3^6}\)
\(=\frac{3}{\frac{1}{3}\cdot\frac{1}{2}}=3\div\frac{1}{6}=3.6=18\)
b, Làm tương tự nha bn
\(A=1-2+2^2-2^3+2^4-2^5+...+2^{2016}\)
\(B=\left(1+\dfrac{8}{10}\right).\left(1+\dfrac{8}{22}\right).\left(1+\dfrac{8}{36}\right)...\left(1+\dfrac{8}{8352}\right)\)
a) \(A=1-2+2^2-2^3+2^4-2^5+.................+2^{2016}\)
\(\Rightarrow2A=2\left(1-2+2^2-2^3+2^4-2^5+............+2^{2016}\right)\)
\(\Rightarrow2A=2-2^2+2^3-2^4+2^5-2^6+...........+2^{2017}\)
\(\Rightarrow2A-A=\left(2-2^2+2^3-2^4+.........+2^{2016}\right)-\left(1-2+2^3+2^4-2^5+.....+2^{2017}\right)\)\(\Rightarrow A=2^{2017}-1\)
Câu a xong đã, câu b tính sau :P
\(\left(\frac{1}{16}\right)^x=\left(\frac{1}{8}\right)^6\)
\(\left(\frac{1}{16}\right)^x=\left(\frac{1}{8}\right)^{36}\)
\(\left(\frac{1}{32}\right)^x=\left(\frac{1}{8}\right)^{15}\)
\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)
thank you