Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
oát đờ
Xem chi tiết
Trần Minh Đức
Xem chi tiết
Trần Minh Đức
Xem chi tiết
Thái Viết Nam
Xem chi tiết
Nguyễn Thiên An
Xem chi tiết
Huy Nguyễn
Xem chi tiết
Tú Hàn Anh
Xem chi tiết
Nguyễn Ngọc Anh Minh
15 tháng 8 2017 lúc 8:17

Ký hiệu: 

AB=c; AC=b; cạnh huyền BC=a; đường cao CH=h Ta có

Xét hai t/g vuông AHC và ABC có

\(\widehat{C}\)chung

\(\widehat{CAH}=\widehat{ABC}\)(cùng phụ với \(\widehat{C}\))

=> t/g AHC đồng dạng với ABC \(\Rightarrow\frac{b}{a}=\frac{h}{c}\Rightarrow bc=ah\)

Xét t/g vuông ABC có

\(b^2+c^2=a^2\Rightarrow\left(b+c\right)^2=a^2+2bc\)

\(\Rightarrow\left(b+c\right)^2=a^2+2ah\)( bc=ah chứng minh trên)

\(\Rightarrow\left(b+c\right)^2=\left(a^2+2ah+h^2\right)-h^2=\left(a+h\right)^2-h^2\)

\(\Rightarrow\left(b+c\right)^2+h^2=\left(a+h\right)^2\)

=> b+c; a+h; h là 3 cạnh của tam giác vuông trong đó cạnh huyền là a+h

Nguyễn Ngọc Anh Minh
15 tháng 8 2017 lúc 8:18

Sorry!!!

Phần ký hiệu sửa thành 

Đường cao AH=h

Nguyễn Hữu Dũng
Xem chi tiết
ha xuan duong
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2023 lúc 14:39

Gọi AH,BK,CE lần lượt là các đường cao của ΔABC

Lấy DF,DG,FG lần lượt bằng AH,BK,CE

=>AH:BK:CE=BC:AC:AB(Định lí)

=>AH/BC=BK/AC=CE/AB

=>DF/BC=DG/AC=FG/AB

=>ΔDFG đồng dạng với ΔBCA