cho tam giác MNP có MN, H là trung điểm của NP. chứng minh:
cho tam giác MNP có MN=NP lấy H là trung điểm của MP chứng minh NH là tia phân giác của MNP
Xét tam giác MNP có: MN = NP (gt).
=> Tam giác MNP cân tại N.
Xét tam giác MNP cân tại N có:
NH là trung tuyến (H là trung điểm của MP).
=> NH là tia phân giác của góc MNP (Tính chất các đường trong tam giác cân).
Xét \(\Delta NHM\) và \(\Delta NHP\) có:
\(\begin{cases} MN=NP\\ NH\text{ chung}\\ MH=HP\\ \end{cases} \Rightarrow \Delta NHM=\Delta NHP(c.c.c)\\ \Rightarrow \widehat{HNM}=\widehat{HNP}\)
Vậy NH là phân giác \(\widehat{MNP}\)
Cho tam giác MNP có MP = 20cm, I là trung điểm của MN, K là trung điểm của MP.
a) Chứng minh IK là đường trung bình của tam giác MNP.
b) Qua K kẻ KH // MN ( H thuộc NP). Chứng minh H là trung điểm của NP.
c) Chứng minh IH // MP, tính độ dài của đoạn thẳng IH.
giúp em nhanh với ạ em đang cần gấp ạ
\(a,\left\{{}\begin{matrix}MI=IN\\MK=KP\end{matrix}\right.\Rightarrow IK\) là đường trung bình tam giác MNP
\(b,\left\{{}\begin{matrix}MK=KP\\HK//MN\end{matrix}\right.\Rightarrow NH=HP\) hay \(H\) là trung điểm NP
\(c,\left\{{}\begin{matrix}MI=IN\\NH=HP\end{matrix}\right.\Rightarrow IH\) là đường trung bình tam giác MNP
\(\Rightarrow IH=\dfrac{1}{2}MP=10\left(cm\right)\)
Cho tam giác MNP có cạnh MN=2,4cm NP=4cm MP =3,2cm Gọi G là trung điểm của NMH là trung điểm của MP Chứng minh tam giác MNP là tam giác vuông
cho tam giác MNP có MN=MP, MI là đường trung tuyến.
a) tam giác MNP là tam giác gì?
b)chứng minh: tam giác MNI= tam giác MPI
c) chứng minh MI là dường trung trực của đoạn thẳng NP
d) cho MN=MP= 10cm, NP= 12cm. tính độ dài MI
e)kẻ IH vuông góc với MN, H thuộc MN. trên MH lấy điểm E, trên MH lấy điểm E, trên MP lấy điểm Fsao cho góc MEF bằng hai lần góc EIH. chứng minh rằng: EI là tia phân giác của góc HEF
a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)
b) xét tam giác MNI và MPI có
MI chung
MN=MP(GT)
IN=IP(MI là trung tuyến nên I là trung điểm NP)
SUY ra tam giác MNI=MPI(C-C-C)
c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)
d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I
Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP
Mà NP=12cm(gt) suy ra NI=12x1/2=6cm
xét tam giác vuông MNI có
NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)
Suy ra MI2=NM2-NI2
mà NM=10CM(gt) NI=6CM(cmt)
suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8
mà MI>0 Suy ra MI=8CM (đpcm)
ế) mik gửi cho bn bằng này nhé
a) Vì MN=MP => tam giác MNP là tam giác cân tại M.
b)Xét tam giác MIN và tam giác MIP có:
MN=MP (vì tam giác MNP cân)
\(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)
NI=PI(vì MI là trung tuyến)
=> tam giác MIN=tam giác MIP(c.g.c)
c) Ta có: MN=MP
IN=IP
=> M,I thuộc trung trực của NP
Hay MI là đường trung trực của NP
d) IN=IP=NP/2=12/2=6(cm)
Xét tam giác MIN có góc MIN =90*
=> MN^2=MI^2 + NI^2
=> MI^2=MN^2-NI^2
=> MN^2 = 10^2 - 6^2
=> MN = 8
e) Tam giác HEI có goc IHE=90*
=> góc HEI + góc HIE= 90*
Mà góc HIE = góc MEF/2
=> góc MEF/2 + góc HEI = 90* (1)
Mà góc MEF + góc HEI + góc IEF = 180*
=> góc MEF/2 + góc IEF = 90* (2)
Từ (1) và (2) => góc HEI = góc IEF
Hay EI là tia phân giác của góc HEF
cảm ơn hoàng hàn nhật băng nhiều, mk mới tham gia nên ko biết mỗi câu hỏi chỉ dc k đúng 1 lần xin lỗi bạn nha
Cho tam giác MNP. Đường trung trực của MN cắt đường trung trực của MP tại I. Hạ IH ⊥NP. Chứng minh H là trung điểm của NP|
Giúp mình với
I nằm trên trung trực của MN
=>IM=IN
I nằm trên trung trực của MP
=>IM=IP
=>IN=IP
=>ΔINP cân tại I
mà IH là đường cao
nên H là trung điểm của NP
Cho tam giác MNP có MN=MP, gọi I là trung điểm của NP.
a/ trên cạnh MP, MN lần lượt lấy điểm E,F sao cho ME=MF. Chứng minh: NE=PF.
b/ Gọi H là giao điểm của NE và PF. Chứng minh: M,H,I thẳng hàng.
c/ Chứng minh EF//NP
Cho tam giác MNP có MN = MP; I là trung điểm của NP. Chứng minh rằng: tam giác MNI và tam giác MPI bằng nhau
Cho tam giác MNP có MN=MP, I là trung điểm của NP
a) CMR: tam giác MNI và tam giác MPI bằng nhau
b) CMR: MI là tia phân giác của MNP
c) CMR: MI là đường trung trực của NP
d) Lấy điểm E, F lần lượt trên cạnh MN, MP sao cho NE=PF, CMR: tam giác MEI và tam giác MFI bằng nhau
Cho tam giác MNP có MN = MP, gọi I là trung điểm của NP
a) Chứng minh: Tam giác MNI = Tam giác MPI
b) Chứng minh : MI vuông góc với NP
a) vì tam giác MNPcó MN=MP=> tam giác MNP cân tại M mà MI là đường trung tuyến nên MI cũng là đường phân giác
xét tam giác MNI=tam giác MPI (cgc)
b) Theo câu a tam giác MNP= tam giác MPI =>góc MIN = góc MIP
Ta lại có MIN+MIP=180 độ=>MIN=MIP=90 độ=>MI vuông góc với NP
a) VÌ TAM GIÁC MNP CÓ MN=MP=>TAM GIÁC MNP CÂN TẠI M=>ĐƯỜNG TRUNG TUYẾN MI CŨNG LÀ ĐƯỜNG PHÂN GIÁC
XÉT TAM GIÁC MNI VÀ TAM GIÁC MPI CÓ
MN=MP
NMI=PMI
MI CHUNG
=> TAM GIÁC MNI = TAM GIÁC MPI (CGC)
b) THEO CÂU a:TAM GIÁC MNI=TAM GIÁC MPI=>GÓC MIN=GÓC MIP
MÀ MIN+MIP=180độ=>MIN=MIP=90 độ=>MI vuông góc với NP
cho tam giác MNP vuông tại M có MP=MN Gọi I là trung điểm của NP
a) C/m:Tam giác MIP=tam giác MIN
b) C/m:MI vuông góc NP
c)Từ P vẽ đường vuông góc với NP cắt MN tại F. C/m:FP//MI và tính số đo góc MFP
:> mình đang cần gấp
Cho tam giác MNP có MN = MP . Gọi A là trung điểm của NP . Chứng minh N- P