A=(x+1/2x+4/x+3 -2)/ x+1/x+3-x^2-5x+3/2x
a) tim dk cua x de A dc xac dinh
b) rut gon A
\(A=\dfrac{x+1}{x^2+x}\)
a, tim dieu kien xac dinh
b, rut gon A
`a, x^2 +x` \(\ne\) `0` \(\Leftrightarrow x\left(x+1\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
`b, A=(x+1)/(x^2+x) =(x+1)/(x(x+1))=1/x`
\(A=\dfrac{x+1}{x^2+x}\)
\(a,\) Điều kiện xác định: \(x^2+x\ne0\Leftrightarrow x\left(x+1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)
\(b,A=\dfrac{x+1}{x^2+x}=\dfrac{x+1}{x\left(x+1\right)}=\dfrac{1}{x}\)
bai 1
a = (3x / 2x + 4 ) + (x +3 /x ^ 2 - 4 )
a . tim x de gia tri phan thuc a duoc xac dinh
b. rut gon a
c. tinh gia trin cua a khi x bang -3
d . tim gia tri cua x de phan thuc co gia tri bang 2
bai 1
a = (3x / 2x + 4 ) + (x +3 /x ^ 2 - 4 )
a . tim x de gia tri phan thuc a duoc xac dinh
b. rut gon a
c. tinh gia trin cua a khi x bang -3
d . tim gia tri cua x de phan thuc co gia tri bang 2
a: ĐKXĐ: x<>2; x<>-2
b: \(A=\dfrac{3x\left(x-2\right)+2x+6}{2\left(x-2\right)\left(x+2\right)}=\dfrac{3x^2-6x+2x+6}{2\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{3x^2+4x+6}{2\left(x-2\right)\left(x+2\right)}\)
c: Khi x=-3 thì \(A=\dfrac{3\cdot\left(-3\right)^2-4\cdot3+6}{2\left(-3-2\right)\left(-3+2\right)}=\dfrac{21}{10}\)
cho 2 bieu thuc A=x+x^2/2-x va B=2x/x+1+3/x-2-2x^2+1/x^2-x-2 a, tinh gia tri cua A khi /2x-3/=1 b,tim dieu kien xac dinh va rut gon bieu thuc B c,tim so nguyen x de P=A.B dat gia tri lon nhat
mk dang can gap
a:
ĐKXĐ: x<>2
|2x-3|=1
=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào A, ta được:
\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)
b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)
\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)
\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)
c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)
\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)
Để P lớn nhất thì \(\dfrac{2}{x-2}\) max
=>x-2=1
=>x=3(nhận)
cho P=(2+x/2-x+4x^2/x^2-4-2-x/2+x):x^2-3x/2x^2-x^3
a) tim dieu kien cua x de gia tri cua P xac dinh
b) rut gon P
mn giup minh voi
Cho bieu thuc: ( x-1/ x+1 - x-1/x+1) : 2x / 3x - 3
a, Tim dieu kien xac dinh cua bieu thuc P
b, Rut gon bieu thuc P
c, Tim x thuoc z de P nhan gia tri nguyen.
Đề bài sai rồi bạn ! Mình sửa :
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
b) \(P=\left(\frac{x-1}{x+1}-\frac{x+1}{x-1}\right):\frac{2x}{3x-3}\)
\(\Leftrightarrow P=\frac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{x^2-2x+1-x^2-2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{-4x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{3\left(x-1\right)}{2x}\)
\(\Leftrightarrow P=\frac{-6}{x+1}\)
c) Để P nhận giá trị nguyên
\(\Leftrightarrow\frac{-6}{x+1}\inℤ\)
\(\Leftrightarrow x+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;-3;1;-4;2;-7;5\right\}\)
Ta loại các giá trị ktm
\(\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)
Vậy để \(P\inℤ\Leftrightarrow x\in\left\{-2;-3;-4;2;-7;5\right\}\)
Cho bieu thuc A=\(\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\div\dfrac{1}{\sqrt{x}-1}\)
a/ Tim dieu kien cua x de bieu thuc A co gia tri xac dinh
b/ Rut gon A
c/ Tinh gia tri cua A khi x = \(4-2\sqrt{3}\)
d/ Tim gia tri nho nhat cua A
a. ĐKXĐ : x>1.
b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)
c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:
\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)
Vậy giá trị của A tại \(x=4-2\sqrt{3}\) là \(1+3\sqrt{3}\).
rut gon
1/x-1-x/1-x^3*x^2+x+1/x+1):(2x+1/x^2+x+1)
toi rut gon dc
x^2+x+1/x^2-1
nhung ko tinh dc gtri nguyen cua x de bt tren co gtri nguyen
cho bt \(A=\frac{x^2}{x^2-4}-\frac{x}{x+2}-\frac{2}{x-2}\)
a, tim x de ieu thuc A duoc xac dinh
b,rut gon bieu thuc A
c,tim gia tri nguyen cua x de A nguỵen
dkxd \(\hept{\begin{cases}\\\end{cases}}x-2=0;x+2=0\Leftrightarrow\hept{\begin{cases}\\\end{cases}x=+2;x=-2}\)
b/ \(\frac{x^2}{x^2-4}-\frac{x}{x+2}-\frac{2}{x-2}=\frac{x^2}{\left(x-2\right).\left(x+2\right)}-\frac{x.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}-\frac{2.\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}\)
\(\frac{x^2-x^2-2x-2x+4}{\left(x-2\right).\left(x+2\right)}=\frac{4}{\left(x-2\right)\left(x+2\right)}\)
tới khúc này bí rồi ^^
a,ĐKXĐ của A là:\(x\ne+2;-2\)
b,\(\frac{x^2-x^2+2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{4}{\left(x+2\right)\left(x-2\right)}\)
c,Để A\(\in\)Z=> (x+2)(x-2)\(\inƯ\)(4) hay \(x^2-4\inƯ\)(4)=\(\left(4;-4;2;-2;1;-1\right)\)
Ta có bảng
\(x^2-4\) | x |
4 | \(\sqrt{8}\) |
-4 | 0 |
2 | \(\sqrt{6}\) |
-2 | \(\sqrt{2}\) |
1 | \(\sqrt{5}\) |
Vậy A\(Z=>x\in\)( 0;\(\sqrt{8};\sqrt{6};\sqrt{2};\sqrt{5}\))
\(\frac{-4}{\left(x+2\right)\left(x-2\right)}\) chơ bn