Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Thư Trần
Xem chi tiết
Trương Ngọc Linh
5 tháng 7 2023 lúc 13:58

Gọi số cần tìm là a ( a ∈ N)

Ta có:

a chia 5 dư 1

⇒ a+4 chia hết cho 5

a chia 7 dư 3

⇒ a+4 chia hết cho 7

Mà (5,7) = 1

⇒ a+4 chia hết cho 35

Vì a là số tự nhiên nhỏ nhất 

⇒a+4 = 35

⇒a=35-4

⇒a=31

Vậy số tự nhiên cần tìm là 31

Nguyễn Đức Trí
5 tháng 7 2023 lúc 15:14

          1)Gọi số x là số tự nhiên nhỏ nhất cần tìm, theo đề bài ta có :

x=5a+1 ; x=7b+3

Nên 5a+1=7b+3

5a-7b=2

Ta thấy 5.6-7.4=2

Nên a=6; b=4

Vậy x=31

2) Theo đề bài : p2 + 4 và  p2 - 4 đều là số nguyên tố

⇒ (p2 + 4) và (p2 - 4) ⋮ 1 và chính nó

 ⇒ (p2 + 4) và (p2 - 4) ϵ {1;2;3;5;7;11;13...}

Ta thấy khi (p2 + 4) = 13 và (p2 - 4) = 5 thì p=3

Vậy p=3

nguyễn gia khánh
Xem chi tiết
Việt Hoàng
15 tháng 1 2018 lúc 21:36

Vì p1; p2 là 2 số nguyên tố lẻ liên tiếp (p1< p2) nên p1 + 2 = p2 (1) 
Thay (1) vào biểu thức (p1 + p2) /2 ta có: 
(p1 + p2) /2 
= (p1 + p1 + 2) /2 
= (2p1 + 2) /2 
= 2(p1 + 1) /2 
= p1 + 1 
Vì p1 là số lẻ nên p1 + 1 là số chẵn 
Mà chỉ có số 2 là số nguyên tố chẵn duy nhất 
=> p1 + 1 hay (p1 + p2) /2 là hợp số

Minh Thư Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 12:35

1: Gọi số cần tìm là a

Theo đề, ta có: a-1 chia hết cho 5 và a-3 chia hết cho 7

mà a nhỏ nhất

nên a=31

2: TH1: p=3

=>p^2+4=13 và p^2-4=5

=>NHận

Th2: p=3k+1

p^2-4=(3k+1-2)(3k+1+2)

=3(k+1)(3k-1) 

=>Loại

TH3: p=3k+2

=>p^2-4=9k^2+12k+4-4

=9k^2+12k=3(3k^2+4k) 

=>Loại

Nhok nấm lùn____2k7
Xem chi tiết
shitbo
24 tháng 11 2018 lúc 20:13

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

Vũ Phương Nhi
Xem chi tiết

a: \(p^2-2q^2=17\)

=>\(2q^2=p^2-17\)

=>\(q^2=\frac{p^2-17}{2}\)

=>\(q^2\) ⋮2

=>q⋮2

mà q là số nguyên tố

nên q=2

Ta có: \(p^2-2q^2=17\)

=>\(p^2=2q^2+17=2\cdot2^2+17=25=5^2\)

=>p=5(nhận)

b: Đặt \(A=q+q^{p}\)

p là số nguyên tố nên p>1

=>p-1>0

Ta có: \(A=q+q^{p}\)

\(=q\left(q^{p-1}+1\right)\)

Để A là số nguyên tố thì q là số nguyên tố và \(q^{p-1}+1=1\)

=>\(q^{p-1}=0\) và q là số nguyên tố

\(q^{p-1}<>0\) \(\forall\) q

nên (q;p)∈∅

Hà Mai Khanh
Xem chi tiết
Lê Song Phương
23 tháng 6 2023 lúc 8:06

 Để ý rằng \(p^2-4=\left(p-2\right)\left(p+2\right)\), hơn nữa \(p-2< p+2\) nên để \(p^2-4\) là số nguyên tố thì \(p-2=1\) và \(p+2\) là số nguyên tố \(\Leftrightarrow p=3\).

 Thử lại, ta thấy rõ rằng \(3^2+4=13\) và \(3^2-4=5\) đều là các số nguyên tố. Vậy, \(p=3\) 

Lê Trọng Quý
Xem chi tiết
bảo lâm
14 tháng 9 2023 lúc 20:45

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

Nguyễn Lê Thị Hậu
Xem chi tiết
thomas lê
26 tháng 8 2015 lúc 12:34

1)vì p là số nguyên tố lớn hơn 3=> p không chia hết cho 3

=>4p không chia hết cho 3

vì p lớn hơn 3  => 2p+1 lớn hơn 3   =>2p+1 không chia hết cho 3

=>2.(2p+1) không chia hết cho 3   =>4p+2 không chia hết cho 3

vì 4p;4p+1;4p+2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chia hết cho 3

mà 4p và 4p+2 không chia hết cho 3=> 4p+1 chia hết cho 3

=>4p+1 là hợp số.

fadfadfad
Xem chi tiết
nganhd
Xem chi tiết
bùi minh vũ
7 tháng 4 2018 lúc 20:38

                   TH1:p<3

                   +Vì p<3;mà p là số nguyên tố =>p=2.

                   Với p=2 ta có:p3+2=23+2=8+2=10(là hợp số nên loại)

                   TH2:p>3

                   +vì p>3 nên=>p=6k+1 hoặc p=6k+5.

                   Với p=6k+1 ta có :p3+2=(6k+1)3+2=6k3+1+2=6k3+3:3(là  hợp số nên loại)

                   Với p=6k+5 ta có:p3+2=(6k+5)3+2=6k3+125+2=6k3+127(vì UCLN(6k3;127)=1=>6k3+127 là số nguyên tố nên nhận)

                                                          Vậy với p=6k+5 thì p3+2 cũng là số nguyên tố.

Đặng Văn Gia Khánh
3 tháng 10 2024 lúc 20:15

Dễ